Information Flow Control for Secure Web Sites
by
Maxwell Norman Krohn

A.B., Harvard University (1999)
S.M., Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering anth@uter Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2008

(© Massachusetts Institute of Technology 2008. All righteresd.

AULNOT L. e e
Department of Electrical Engineering and Computer Science

August 29, 2008

Certifled DY
Frans Kaashoek

Professor
Thesis Supervisor

Certified DY
Robert Morris

Professor
Thesis Supervisor

Certified DYo

Eddie Kohler
Associate Professor, UCLA
Thesis Supervisor

ACCEPIEA DY . .o

Professor Terry P. Orlando
Chair, Department Committee on Graduate Student

Information Flow Control for Secure Web Sites

by
Maxwell Norman Krohn

Submitted to the Department of Electrical Engineering anth@uter Science
on August 29, 2008, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Sometimes Web sites fail in the worst ways. They can revaaater data that can never be

retracted [60, 72, 78, 79]. Or they can succumb to vandabsm subsequently show corrupt data
to users [27]. Blame can fall on the off-the-shelf softwdrattruns the site (e.g., the operating
system, the application libraries, the Web server, eta),nbore frequently (as in the above

references), the custom application code is the guiltyypadnfortunately, the custom code

behind many Web sites is difficult to secure and audit, duargel and rapidly-changing trusted

computing bases (TCBSs).

A promising approach to reducing TCBs for Web sitesléxentralized information flow
control (DIFC) [21, 69, 113]. DIFC allows the split of a Web applicatiinto two types of
components: those inside the TCB (trusted), and those wiifumtrusted). The untrusted com-
ponents are large, change frequently, and do most of thewatigm. Even if buggy, they cannot
move data contrary to security policy. Trusted componergsrauch smaller, and configure the
Web site’s security policies. They need only change wheiptitiey changes, and not when new
features are introduced. Bugs in the trusted code can leamhtpromise, but the trusted code is
smaller and therefore easier to audit.

The drawback of DIFC, up to now, is that the approach regairegjor shift in how program-
mers develop applications and thus remains inaccessiteogrammers using today’s proven
programming abstractions. This thesis proposes a new Dysters,Flume that brings DIFC
controls to the operating systems and programming languiaggide use today. Its key contri-
butions are: (1) a simplified DIFC model with provable setyuguarantees; (2) a new primitive
called endpointsthat bridges the gap between the Flume DIFC model and stmugerating
systems interfaces; (3) an implementation at user-levelionx; and (4) success in securing a
popular preexisting Web application (MoinMoin Wiki).

Thesis Supervisor: Frans Kaashoek
Title: Professor

Thesis Supervisor: Robert Morris
Title: Professor

Thesis Supervisor: Eddie Kohler
Title: Associate Professor, UCLA

Previously Published Material

Chapters 3 and 6 through 9 appeared as part of a previousatidti [58]: Maxwell Krohn,
Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaask, Eddie Kohler, and Robert
Morris. Information flow control for standard OS abstraoio InProceedings of the 21st

Symposium on Operating Systems Principles (SO&BYyenson, WA, October 2007.

Acknowledgments

As | finish up five years of graduate work at MIT, | begin to tat@ck of how indebted | am to so
many, from people | see on a daily basis, to those who wer@pnaolly influential during life’s
previous seasons. The list begins with the faculty adviadrs have taken me under their wing.
M. Frans Kaashoek is an inexhaustible fountain of enthosiancouragement and optimism.
I hope just some of his mastery of everything from grand vigsmx86 minutia has rubbed off
on me. But more than anything, his always sunny dispositian thie support for my graduate
work, the counterbalance to my histrionic proclivity towastoom and gloom. Not only did
Frans figuratively push me up the mountain with financialdacaic, and emotional backing, he
literally did so in our strenuodsbike rides together. The cliché is that a graduate advisisima
loco parentis but in this case the cliché rings true in the best way. Thdfrans for everything.

Robert Morris played the part of the skeptical outsider.otiki me a while to realize this
was a personae he assumed to make my work better, more fo@rsdnore convincing to
those who lacked our MIT/LCS/PDOS biases. By now, his ledsmstarted to sink in, and
I will always hear a voice: how can you say this in a simpler wayow much mechanism is
really required? what problem are you really solving? In aldveasily won over by jargon and
pseudo-intellectualism, Robert’'s language, approadgtigion and insights are genuine. | thank
Robert for the time and effort he has invested in my papersatkg and me over the years, and
hope | can instill the same values in my students.

Rounding out this team is Eddie Kohler. Eddie and | don't glsvaee eye-to-eye on how
best to present information, but given his community-widputation for amazing graphical
design, | must be in the wrong. Eddie worked tirelessly with (@nd in spite of me) to refine
the paper versions of Chapters 3 and 6, improving their gu@émendously. Our collaboration
on earlier projects, like OKWS, Asbestos and Tame, prodsimdar results: different styles,
but a product that shined in the end. Eddie’s dedication fwaving my work, his curiosity to
learn more about the ideas that interest me, and his coaochitige finer points of presentation
have made me a better researcher and communicator. Tharikdghe.

Some faculty in and around MIT wergt my advisors, but they nonetheless advised me
well. Butler Lampson, a thesis reader, gave this thesis mtigh and careful read. | sincerely
thank him for his comments and insights, which have helpegrave this document greatly.
Srini Devadas, Arvind, and Jamie Hicks sat through my pradialks and internal MIT-Nokia
presentations, giving me helpful commentary on contentstylé. Hari Balakrishnan and John
Guttag sat through those tallkad practice job talks, helping me to put my best foot forward on
the job market.

Eran Tromer helped me understand non-interference, anaggested the high-level Flume
formal model. Chapters 4 and 5 bear his influence, and we plaur them into a coauthored
paper. | thank Alex Yip for his deep contributions to the FRjmAsbestos and W5 projects, his
tireless enthusiasm, his talents in hacking and writing, fais inexhaustible wisdom in matters
of cycling, cycle repair, and general do-it-yourself. Tkano Micah Brodsky for his contri-
butions to Flume, W5 and many fascinating conversationanks to Steve VanDeBogart and
Petros Efstathopoulos—friends and colleagues at UCLA—wuiee coauthors on the Asbestos
paper. They along with Nickolai Zeldovich offered advicel@mommentary on the Flume paper
and talk. Thanks to Nickolai for also reviewing Chapters d &rof this thesis. Natan Cliffer

1For me, not for him.

contributed to Flume, Neha Narula to W5, and Cliff Frey and@®Ziegler to Asbestos.

Material in this thesis has been published elsewhere, thusniefits from careful readings
and comments from reviewers and paper shepherds. | thankedndyers, Emin Gun Sirer,
and the anonymous reviewers from Usenix '04, HotOS '05, S@SRAnd SOSP '07. | thank
Nokia, ITRI, MIT, and the NSF for their generous financial gag.

| graduated from the same high school, college and now gtaquagram one year behind
Mike Walfish and have benefited outrageously from his havinfigure things out on his own.
Mike has advised me on: how to get into college, which classéake, how to get into graduate
school, how to write papers and talks, how to get a job, andytviag in between. He’s also
been a patient, selfless and endlessly entertaining frlmedighout. Mike, since this is the one
page of text I've written in the last five years that you havéen kind enough to proofread, |
apologize in advance for any typos. Jeremy “Strib” Strigpland | showed up to graduate school
on the same day, and he has been an inspiring friend and godleaver since. | thank Strib
for everything from reading drafts of my papers, to droppimgnerous well-timed jokes. Dan
Aguayo, he of perpetugdosi ti ve- out | ook, deserves credit for making me laugh as hard
as physically possible. Props to Strib and Dan for being nautiwors on infinitely many papers
regarding the KGB'’s underwater testbed of Commodore 64s.

Bryan Ford and Chris Lesniewski-Laas always went above agdra in their commentary
on drafts and practice talks, helping defend my work when wy attempts faltered. Thanks to
Russ Cox and Emil Sit for their management of PDOS compusaurees, and more important
their willingness to drop everything to help out. | thank ifkdabek and Jinyang Li for their
mentorship and friendship. To Meraki folks like John Bick&anjit Biswas, Thomer Gil and
Sean Rhea: we've missed you in 32-G980, but it was great withigested. | thank those in
PDOS whom I've overlapped with, such as: Dave Andersens Sitayd-Wickizer, Benjie Chen,
Douglas De Couto, Kevin Fu, Michael Kaminsky, Petar Mayni@wn Athicha Muthitacharoen,
Alex Pesterev, Jacob Strauss, Jayashree SubramanianrandtEWitchel. Thanks to Neena
Lyall for her help in getting things done in CSAIL. And spddtzanks to the NTT Class of 1974.

The few times | ventured outside of 32-G980, | enjoyed the mamy of and learned much
from: Dan Abadi, Emma Brunskill, James Cowling, Alan Donmyv&achin Katti, Sam Madden,
Dan Myers, Hariharan Rahul, the other members of CSAILskbyp@nd softball teams, and the
MIT Jazz Ensemble to name but a few. Barbara Liskov ensue@dpresso beans rained like
manna from the heavens; Kyle Jamieson, managed the milk gdwly conspired to keep me
caffeinated, and | can’t thank them enough.

Some of the work alluded to in this thesis (like Tame and OKW&) found adoption at a
Web concern dubbe@k Cupi d. com | thank the engineers there for using this software and
helping to make it better. | thank Sam Yagan and Chris Coynenfanning the OkCupid fort
while | manned the ivory tower, and thanks to Chris for stmijust a fraction of his original
ideas, which often made for interesting academic reseaajagss.

Before | came to graduate school, | was David Mazieres'saieh scientist at New York
University. From him | learned the ropes of systems resedroW to program, which problems
were interesting, which solutions to consider, how to biaake back door, and generally speak-
ing, how to be a scientist. | thank David for his software $pdlis formative mentorship, and
in general his intellectual-freedom-loving ethos. | tharker collaborators at NYU, including
Michael Freedman, Dennis Shasha, Antonio Nicolosi, Jinyiiaand Yevgeniy Dodis.

7

Before starting at NYU, | met the love of my life (now wife) SérFriedberg (now Krohn).
Sarah, thanks for your love, help, companionship and stipippa@ugh these five years of gradu-
ate school. | could not have done it without you, and | lovelyou

Still further in the past, | grew as an undergraduate undetutelage of many luminaries,
chief among them Michael O. Rabin, Peter Sacks and Helenl&erithanks to them for instill-
ing in me a love of academics and intellectual pursuits. ghtichool, Julie Leerburger more
than anyone else taught me to wrteA final heartfelt thank-you to my mom, dad and sister,
who taught me just about everything else.

2This sentiment was expressed in the same context by soméssnene year ago.

8

Contents

1 Introduction 13
1.1 ThreatstoWeb Security e 13
1.1.1 ExploitingtheChannel 14
1.1.2 Exploitingthe Web Browser 15
1.1.3 ExploitingtheWeb Servers. 15
1.1.4 Exploiting Extensible Web Platforms 16
1.2 Approach e 18
1.3 Challenges. e e e 02
1.4 Flume e 22
141 Design e 22
1.4.2 Implementation 23
1.4.3 Application and Evaluation. 23
1.5 Contributions 24
1.6 Limitations, Discussion and Future Work 24
2 Related Work 27
2.1 SecuringtheWeb 7 2
2.2 Mandatory Access Control (MAC) e 28
2.3 Specialized DIFCKernelsuun 29
2.4 Language-Based Techniques 30
2.5 Capabilities Systems 30
3 The Flume Model For DIFC 33
3.1 TagsandlLabels 3 3
3.2 Decentralized Privilege e e 35
3.2.1 Capabilities e 35
3.2.2 Global Capabilites 36
3.2.3 ExamplesandPolicies 6 3
3.3 SecCurity e 37
3.31 SafeMessages 38
3.3.2 External Sinksand Sources. 0w 39
3.3.3 Objects e 39
3.34 Examples 40
3.4 Covert Channels in Dynamic Label Systems 41
3.5 Summary ... e e 43

10

4 The Formal Flume Model 45
4.1 CSPBaSICS . . . v o e e e e 46
4.2 SystemCallinterface e 49
4.3 KernelProCcesses e e e 50
4.4 ProcessAlphabets 51
45 SystemCalls e 52
4.6 Communication o e e e e e 55
4.7 Helper Processes i i i e e e 57

4.7.1 The Tag ManagéfAGMGR 57

4.7.2 The Process Manag&fROCMGR 60

4.7.3 Per-process QueuddUEUES 60
4.8 High Level System Definition 62
4.9 DISCUSSION i e e e e e e 36

5 Non-Interference 65
5.1 CSPPreliminaries e 65
5.2 Definition e e 66

5.2.1 Stability and Divergence 67
5.2.2 TiMe e 67
5.2.3 Declassification 8 6
5.2.4 Model Refinement and Allocation of Global Identifiers 69
5.3 Alphabets e 71
5.4 Theoremand Proof e 2 7
5.5 Practical Considerations e 76
5.6 Integrity e e 77

6 Fitting DIFC to Unix 79
6.1 Endpoints e 80
6.2 Enforcing Safe Communication 81
6.3 Examples 83

7 Implementation 85
7.1 Confined and Unconfined Processes 85
7.2 Confinementspawn andflume fork 86

7.2.1 SPAWN e e e e e e e 88
7.2.2 flumefork 89
7.3 IPC . . e 91
7.4 Persistence e e e 29
7.4.1 FilesandEndpoints. 0. 29
7.4.2 FileMetadata e 93
7.4.3 PersistentPrivileges oo 94
744 GIroUPS o e e e e e 94
7.45 Setlabel 95

10

7.4.6 PrivilegedFilters 96
7.4.7 File System Implementation 96
7.5 Implementation Complexityand TCB 97
Application 99
8.1 MoinMoinWiki 99
8.2 Fluming MoinMoin e e oa
8.3 FlumeWiki Overview 100
8.4 Principals, Tags and Capabilities 101
8.5 Acquiring and Granting Capabilities 101
8.6 Export- and Write-Protection Policies 101
8.7 End-to-EndIntegrity e 102
8.8 Principal Management e 103
8.9 DISCUSSION v o o e e 041
Evaluation 105
9.1 Security e e 510
9.2 Interposition Overhead, 105
9.3 FlumeOverhead. 071
9.4 Cluster Performance 107
9.5 DISCUSSION o o o e 081
Discussion, Future Work and Conclusions 109
10.1 Programmability 109
10.2 Security Compartment Granularity 111
10.3 Maintenance and Internals L Lo 112
10.4 ThreatModel e 121
10.4.1 Programmer Bugs That Do Not Allow Arbitrary Code Bxen 113
10.4.2 Virulent ProgrammerBugs e 113
10.4.3 Invited MaliciousCode 114
10.5 Generality and Future Directions 0o 115
10.6 Conclusion 161
More on Non-Interference 117

Al UnwindinglLemma paki

12

Chapter 1

Introduction

At least three trends indicate that the World Wide Web wilp&xd upon its successes for the
foreseeable future. Most obviously, more people than eseituwith penetration in China alone
reaching 253 million, up 56% year-over-year [65]. Seconep\sites are gaining prominence,
amassing more sensitive data and exerting more influenaesueeyday life. Third, Web tech-
nology continues to mature, with Web sites progressing fstatic pages to dynamic, extensible
computing platforms (e.g. Facebook.com [25] and Open$ftid). All the while, Web se-
curity remains weak, as seen in the popular press [27, 662,28, 79, 103] and published
technical surveys [33, 101].

All trends spell potential for Web attackers, who see a gngwiopulation of victims using
browsers and Web sites with unpatched security holes. Asdted increase in sophistication,
attackers get more powerful tools. As sites amass data aaw] attackers see increased payoffs
for infiltration. In general, a worsening security trendeitens to mar the world’s transition to
Web-based computing, much as it marred the previous shifétworked PCs.

This thesis aims to improve the overall state of Web secufFitg first aspect of this challenge
is to identify the right problem to attack: with so much wronih the current Web infrastruc-
ture, which components need the most attention, and whéechnast amenable to drastic change?
This introductory chapter provides a survey of the Web’'skmeases, and focuses attention on
one in particular: the code running on Web servers that sdirgan site to site. We hypothesize
that to secure such software, operating systems (OS) ongitpbse better interfaces and better
security tools to Web application developers. This thesigetbps a general theory for what
those interfaces and tools should be.

1.1 Threats to Web Security

Figure 1-1 shows a simplified diagram of how the Web works yo@dient machines run Web
browsers that routinely connect to different servers sptheough the Internet. In this example,
serversa. com b. comandc. comare involved. The browser queries these servers, receiving
HTML responses, then renders that HTML into a convenient uderface. The browser maps
different server responses to different user interfacg €léiments, such as browgabs browser

13

14

a.com

Client Web Browser App
Ws DB
Server

iframe

tab 1 tab 2

a.com b.com c.com
cookie cookie cookie

b.com
ws App DB
Server

c.com
ws App DB
Server

Figure 1-1: A simplified diagram of the Web architecture.

windows or eveni f r anmes, which embed one server’s response inside another’s. Iryman
Web systems, databases on the server side (those randxym b. com andc. con) house

a majority of the useful data. However, those servers camr simall data packets, known as
cookies persistently on clients’ browsers. The browser enforcescarity policy: allowa. com

to set and retrieve a browser cookie for its own use, butldisat to tamper withb. comnis
cookie.

In modern settings, all parts of the system in Figure 1-1 adenattack: the Ul elements on
the browser, the cookie system, the server infrastructhestransport between client and server,
etc. Weaknesses anywhere along this chain can allow ade=r$a steal or corrupt sensitive
data belonging to honest users. These attacks fall undsz tieneral headings: channel, client
and server.

1.1.1 Exploiting the Channel

Most Web systems depend upon some authenticated, eavesdropsistant channel between
the client and server. In practice, such a channel is difftcuéstablish. Users typically prove
their identity to servers with simple passwords, but vagisocial engineering attacks (especially
phishing[18]) allow attackers to capture and replay these loginenéédls. In other cases, users
have weak passwords, or the same passwords for many si@singl an unscrupulous site
administrator at sita. comsteal Alice’s data fronio. com Also, users on compromised clients
(those infected with malware) can lose their keystrokesl (@nce their login credentials) to
whomever controls their machines.

Even if a user can authenticate successfully to the remotersether challenges to his
session remain. Many Web sites do not use Secure Sockets (Efyk) [19], and hence their
network communication is susceptible to tampering or edregping. For even those Web sites
that do, the question of how to distribute server certifisagmains open. For instance, attackers
can distribute bogus certificates for well-known sites bpleiting confusing client Uls and

15

weaknesses in the domain name system (DNS) [20, 47, 107].

1.1.2 Exploiting the Web Browser

Other attacks target the Web browser, preying on its manageai sensitive data (like cookies)
and its ability to install software like plug-ins. The mas¢t-and-true of these methods is Cross-
Site Scripting (XSS) [10, 22, 54]. In XSS, an attacker Mallopntrols sitec. combut wishes

to steal information from Victor as he interacts with sitecom Mallory achieves these ends by
posting JavaScript code & com perhaps as a comment in a forum, a blog post, or a caption on
a photo. If buggy, code running an comis server will show Mallory’s unstripped JavaScript
to other users like Victor. His browser will then execute tiogle that Mallory crafted, with the
privileges ofa. com Thus, Mallory’s code can access Victor's cookie &orcomand instruct
the browser to send this data ¢o com which she controls. Once Mallory recovers Victor's
cookie, she can impersonate Victoraocomand therefore tamper with or steal his data. Other
attacks use similar techniques to achieve different endss<site Request Forgery [50] hijacks
user sessions to compromise server-side data integritgximple, to move the user’s money
from his bank account to the attacker’s. “Drive-by downliogd exploits browser flaws or XSS-
style JavaScript execution to install malware on Victoraamine [81].

1.1.3 Exploiting the Web Servers

The third category of attacks will be the focus of this theaitacks on server-side Web comput-
ing infrastructure, like the Web servers, databases andlavidire boxes that power siteascom

b. comandc. comin our examples. Web servers are vulnerable to all of thes&itd attacks
observed throughout the Internet’s history, such as: weakirdastrator passwords, server pro-
cesses (likessendmai | or ssh) susceptible to buffer overflows, kernel bugs that allowaloc
non-privileged users to assume control of a machine, oripalympering.

Even if resilient to traditional attacks, Web servers facavg challenges. Many of today’s
dynamic Web sites serve as interfaces to centralized dsgabarhey are gatekeepers, tasked
with keeping sensitive data secret and uncorrupted. Umiately, these Web sites rely on huge
and growing trusted computing bases (TCBs), which inclutie: operating system, the stan-
dard system libraries, standard system services (likeibseevers and remote shell servers),
application libraries, Web servers, database softwart nawst important, the Web application
itself. In some cases, the application is off-the-shelfvgafe (like MoinMoin Wiki, discussed
in Chapter 8), but in many others, the code varies wildly figita to site.

Most popular search engines, e-commerce sites, sociabrieywphoto-sharing sites, blog
sites, online dating sites, etc., rely heavily on customecoditten by in-house developers. In
documented cases, custom code can reach hundreds of tdsdyS@hor millions [15] of lines,
contributed by tens to thousands of different programm8mne Web sites like Amazon.com
serve each incoming Web request with sub-requests to hdmaredifferent logical services
(each composed undoubtedly of thousands of lines of prapyieode), running on machines
distributed throughout a huge cluster [16]. In all casess¢hexploding codebases do not benefit

16

Profile edit Friends/v Inbox({4) » home account privacy logout

facebook
Edit My Applications

ﬂ Use this page to control which applications appear on your Browse more applications »
— profile, application menu, or News Feed.
Applications -3

Search

Dragto reorder

@ Advanced Wall (about) Edit Settings X Remove
#+ [@] Photos
4 18 Groups 4 Books iRead (aboutt Edit Settings X Remove
i [E] Events
: = # Compare People (shout! Edit Settings X Remove
[E Marketplace
& BB My Aquarium 1 Events (about) Edit Settings % Remove
t [Advanced wall
B coipare pesnie M8 Gifts (about Edit Settings Left menu disabled % Rernove
0 Goodreads Books 0 Goodreads Books iabour) Edit Settings ¥ Remove
i s DT 4% Groups tabourr Edit Settings Wi
+ @ OkCupid Dating
Test [E Marketplace (zbouti Edit Settings X Remove
R Video
t] Posted ftems 53 My Aquarium tabout) Edit Settings X Rernove
\
Notes
O] Notes tabout) Edit Settings % Remove

Figure 1-2: Facebook.com allows third-party applications

from the public scrutiny invested in popular open sourcévate like the Linux Kernel or the
Apache Web server.

In practice, bugs in custom code can be just as dangeroumses tieeper in the software
stack (like the kernel). In-house Web developers can intedvulnerabilities in any number
of ways: they can forget to apply access control checksidascape input properly (resulting
in SQL-injection attacks [42]), allow users to input Java@dnto forms (resulting in the XSS
attacks mentioned previously), and so on. Web sites oftelateptheir code with little testing,
perhaps to enhance performance in the face of a flash crowd,esrable new features to stay
abreast of business competitors. Tech news articles anénaldility databases showcase many
examples in which security measures failed, leaking peidsta [60, 72, 52, 78, 79, 103], or
allowing corruption of high-integrity data [27]. In most thifese cases, the off-the-shelf software
worked, while site-specific code opened the door to attaukeed, surveys of Web attacks show
an uptick in SQL-injection style attacks on custom-codeilevpopular off-the-shelf software
seems to be stabilizing [101].

1.1.4 Exploiting Extensible Web Platforms

Innovations in Web technology have in recent years madesssige security worse. Whereas
Web code was previously written by well-meaning yet somesimareless professional Web
developers, new extensible Web platforms like FacebookQyehSocial allow malicious code
authors to enter the fray. The stated intention of theséopias is to allow third-party application
developers to extend server-side code. By analogy, theWabesite (Facebook.com) is a Web-
based operating system, providing rudimentary servides User authentication and storage.
Independent developers then fill in the interesting sitéufes, and the software they write can
accesses the valuable data that Facebook stores on itsssekpplications exist for all manner

17

Built-In
Applications

X

1. GET /Builtin Demux Third-Party
Gateway

6. reply

Figure 1-3: A request for a built-in Facebook Application

Facebook.com Server Cluster

Built-In
Applications

3rd Party Server Cluster

i 3
) Aquarium o
1. GET /Aquarium »| Demux Third-Party Application {¢—|7
Gateway 0 0O o0 8.
1] [[1

10. reply 5. A A 6. Asf of A

Figure 1-4: A request for a Third-Party Facebook Applicatio

of social interactions, from playing poker games to bogstibout vacation itineraries. Figure 1-
2 shows, for example, that users have many applicationsoecinom, and that they can manage
these applications much as they would the applications in desktop machines.

Company white papers imply the implementation is straatbrd. Figure 1-3 shows the
request flow for one of FacebooWlsiilt-in applications, written by the Facebook developers.
The browser makes a Web request to Facebook’s server; thesteis routed to Facebook’s
built-in code, which outputs a response after communigatiith the company’s database. For
third-party applications (as in Figure 1-4), Facebook esithe client’s request to Web servers
controlled by the third party. When, as shown in the examfiliee accesses the “Aquarium”
third-party application, that software can access somelicEA records stored on Facebook’s
database and then move that data to its own third-party dséab(Some data like the user’s
e-mail address and password remain off-limits). If the “Aqum” application becomes popu-
lar, it can collect data on behalf of more and more Faceboeksuyielding a private copy of
Facebook’s database [24].

When Alice installs the Aquarium application, it becomest gd Facebook’s TCB from
her perspective. Alice must trust this software to adedyaafeguard her data, but in prac-

18

tice, she has no guarantee Aquarium is up to the task. In sasescvulnerabilities in well-
intentioned third-party Facebook applications allow@itas to steal data [100], like that stored
in the “Aquarium” database in Figure 1-4. In others, the mpapions are explicitly malicious,
created with the primary goal of lifting data from Facebo6k][Thus, Facebook has recreated
for server applications a plague that already infests deskpplications: malware.

Following the well-known script, Facebook takes the saneequition against malware that
current operating systems do: it prompts the user, askiegiger if he really wants to run and
trust the new application (see Figure 1-5). This malwarentwmeasure has the same limitation
on the Web as it does on the desktop: users have no way of kgawiat software will do. Even
the best automated static analysis tools (which Faceboe& ot offer) cannot fully analyze an
arbitrary program (due to decidability limitations). Thesbsuch a scheme can accomplish is to
partition the set of users into two groups: those who arei@masit who avoid data theft but do
not enjoy new extensions; and those who are eager-adoptieosare bound to install malware
eventually. A representative from Facebook captures tisima state of affairs aptly: “Users
should employ the same precautions while downloading swévirom Facebook applications
that they use when downloading software on their desktog]. [6n other words, Facebook’s
security plan is at best as good as the desktop’s, which we kmbe deeply flawed.

While we have focused on Facebook, the competing OpenSaeidibrm is susceptible to
many of the same attacks [41]. Along the current trajectdfgb applications have the potential
to replace desktop applications, but not with secure atems. Rather, the more they mimic
the desktop in terms of flexibility and extensibility, thassesecure they become.

1.2 Approach

In either case—the traditional attacks against Web sit&tsekploit bugs, or the new “malware”
attacks against extensible platforms—the problem is theesa CBs that are too large, which
contain either buggy code that acts maliciously in an aftacknherently malicious code. The
challenge, therefore, is to give Web developers the tootdeanse their TCBs of bloated, in-
secure code. In particular, we seek an approach to purgspetfic code (e.g. Facebook’s
proprietary software) and third-party code (e.g. Aquadidram TCBs, under the assumption
that it receives a fraction of the scrutiny lavished on mangydar software like Linux or Apache.
The thesis presents a new design, in which a small, isolatetlila controls the Web site’s secu-
rity. Bugs outside of this module (and outside the TCB) miggnise the site to malfunction, but
not to leak or corrupt data. A security audit can thereforri$oon the security module, ignoring
other site-specific code. Though this thesis focuses oditioaal” attacks in which adversaries
exploit bugs in well-intentioned code, the techniques gaime, and have the potential to secure
server-side malware in future work.

Recent work shows thatecentralized information flow contr¢DIFC) [21, 70, 113] can
help reduce TCBs in complex applications. DIFC is a varianinéormation flow control
(IFC) [5, 7, 17] from the 1970s and 1980s. In either type otays a tamper-proof software
component (be it the kernel, the compiler, or a user-lesfrence monitgrmonitors processes
as they communicate with each other and read or write filesroggssp that reads “secret”

19

Add Cities I've Visited to your Facebook account?

@@ Cities I've Visited
by TripAdvisor =

Allow this application to...

[+ Know who | am and access my information

[« Put a box in my profile

|7 Place & link in my left-hand navigation

|7 Publish stories in my Mews Feed and Mini-Feed

|7 Place a link below the profile picture on any profile

Cities I've Visited was not created by Facebook. By clicking
‘add,' you agree to the Platform Application Terms of Use.

+] Add Cities I've Visited [EIfEnt

Figure 1-5: The screen Facebook.com prompts users with atiamting a new application.

data is marked as having seen that secret, as are other ggedhap communicates with, and
processes that read any files thatrote after it saw the secret. In this manner, informatiowflo
control systems compute the transitive closure of all gses on the system that could possibly
have been influenced by a particular secret. The system tmetrains how processes in the clo-
sure export data out of the system. In the case of IFC systmhsa trusted “security officer”
can authorize export of secret data. In a DIFC system thereppuilege is decentralized (the
“D” in DIFC), meaning any process with the appropriate peiges can authorize secret data for
export.

This thesis applies DIFC ideas to Web-based systems. A§ asLechain of communicating
server-side processes serves incoming Web requests. sBesc@ the chain that handle secret
data are marked as such. If these marked processes wishaid éaga, they can do so only with
the help of a process privileged to export secrets (knowrndeskassifie). A simple application-
level declassifier appropriate for many Web sites allows’8sécret data out to Bob'’s browser
but not to Alice’s. Those processes without declassificapiovileges then house a majority of
the site specific code. They can try to export data againgytstem'’s security policies, but such
attempts will fail unless authorized by a declassifier.

Example: MoinMoin Wiki This thesis considers the popular MoinMoin Website packégk
as a tangible motivating example. MoinMoin is Wiki applicat a simple-to-use Web-based
file system that allows Web users to edit, create, modify,@gdnize files. The files are either

20

HTML pages that link to one another, or binary files like plsoémd videos. Like a file system,
MoinMoin associates an access control list (ACL) [90] witck file, which limit per-file read
and write accesses to particular users.

Internally, the Wiki’'s application logic provides all maens of text-editing tools, parsers,
syntax highlighting, presentation themes, indexing, sievi control, etc., adding up to tens of
thousands of lines of code. The security modules that implemACLs are largely orthogonal
in terms of code organization. However, in practice, alleodust be correct for the ACLs to
function properly. Consider the simple case in which Aliceates a file that she intends for Bob
never to read. The code that accepts Alice’s post, parsesl ivaites it to storage on the server
must faithfully transmit Alice’s ACL policy, without any de-effects that Bob can observe (like
making a public copy of the file). When Alice’s file later exike server on its way out to client
browsers, the code that reads the file from the disk, parseniders the page and sends the page
out to the network must all be correct in applying ACL polggi¢est it send information to Bob
against Alice’s wishes. All of this code is in MoinMoin’s TCB

By contrast, a DIFC version of MoinMoin, (like that presahia Chapter 8) enforcesnd-
to-end secrecwith small isolated declassifiers (hundreds of lines log)gs elsewhere in the
Wiki software stack can cause program crashes or othestfgil-behavior but do not disclose
information in a way that contradicts the security policylyobugs in the declassifiers can cause
such a leak.

Web applications like Wikis also stand to benefit framtegrity guarantees: that important
data remains uncorrupted. Imagine Alice and Charlie aregiroap that communicates through
the Wiki to track important decisions, such as whether otodire a job applicant. They must,
again, trust a large stack of software to faithful relay thigicisions, and any bugs in the work-
flow can mistakenly or maliciously flip that crucial “hire”tbiAn end-to-endntegrity policy for
this example only allows output if all data handlers meeggnity requirements — that they all
were certified by a trusted software vendor, for instance abB@ve, bugs that cause accidental
invocation of low-integrity code produce fail-stop errotee program might crash or refuse to
display a result, but it will never display a result of lowengtity.

1.3 Challenges

DIFC techniques are powerful in theory, but at least five ingd hurdles prevent their appli-
cation to modern Web sites (like MoinMoin Wiki), which no stihg system has entirely met.
They are:

Challenge 1: DIFC clashes with standard programming techrques. DIFC originated as a
programming language technique [69], and it has found mtistidons in many strongly typed
languages, such as Java [70], Haskell [61], the typed larohttailus [115], ML [77], and so
on. However, such techniques are not compatible with legafiyvare projects and generally
require rewriting applications and libraries [44]. Alsapfuage-based information flow control
is a specialized form of type-checking. It cannot apply twlaages without static typing, such
as Python, PHP, Ruby, and Perl, which are popular languagee¥eloping modern Web sites.

21

Thus, a challenge is to adopt DIFC techniques for progranitsewrfor existing, dynamically-
typed, threaded languages.

Challenge 2: DIFC clashes with standard OS abstractions. Popular operating systems like
Linux and Microsoft Windows have a more permissive securidel than DIFC systems: they
do not curtail a process’s future communications if it haaned secrets in the past. Thus,
programs written to the Linux or Windows API often fail to epi on a DIFC system. Current
solutions make trade-offs. On one extreme, the Asbestosa@pg System [21] implements

DIFC suitable for building Web applications, but does ngi@se a POSIX interface; it therefore
requires a rewrite of many user-space applications andrids. On the other extreme, the
SELinux system (a “centralized” information flow controlssgm) preserves the entire Linux
interface, but at the expense of complicated applicatioreldpment. It requires lengthy and
cumbersome application-specific policy files that are notty difficult to write.

Challenge 3: DIFC at the kernel-level requires a kernel rewite. Asbestos [21] and HiS-
tar [113] are DIFC-based kernels, but are written from stratSuch research kernels do not
directly benefit from the ongoing (and herculean) effortsnamintain and improve kernel sup-
port for hardware and an alphabet-soup of services, like, N8/ 8D, SMP, USB, multicores,
etc. Asbestos and HiStar are also fundamentaligrokernels whereas almost every common
operating system today, for better or worse, followmsi@nolithicdesign. So a challenge is to
reconcile DIFC with common OS organization and popular &esoftware.

Challenge 4: DIFC increases complexity. Common operating systems like Linux already
complicate writing secure programs [56]. Information floystems are typically more com-
plex. Security-typed languages require more type anmoisitisystem calls in security-enabled
APIs have additional arguments and error cases. Moreowst imformation flow systems use
lattice-based models [17], adding mathematical sophittio to the basic programming API. A
challenge is to curtail complexity in the DIFC model and thel Ahat follows.

Challenge 5: DIFC implementations have covert channels. All information flow control
implementations, whether at the language level or the kéwel, suffer fromcovert channets
crafty malicious programs can move information from onecpss to another outside of modeled
communication channels. For example, one exploitativegs® might transmit sensitive infor-
mation by carefully modulating its CPU use in a way obsemddyl other processes. For fear of
covert channels, language-based systems like Jif dislilileeading and CPU parallelism. As
discussed in Section 3.4, some OS-based IFC implemergdil@nAsbestos and IX [66] have
wide covert channels inherent in their API specificationgSthr sets a high standard for covert
channel mitigation, but timing and network-based chanpelsist. So a challenge, as always, is
to build a DIFC system that suffers from as few covert chamaslpossible.

22

1.4 Flume

We presenElume a system that answers many of the above challenges. At ddvighFlume
integrates OS-level information flow control with a legacgix}like operating system. Flume
allows developers to build DIFC into legacy applicationstt®n in any language, either to up-
grade their existing security policies or to achieve newqgmesd impossible with conventional
security controls.

1.4.1 Design

Unix has a wide and imprecisely defined interface, compfigaattempts to “retrofit” it with
DIFC security controls [56]. This thesis takes a four-stagproach to the problem, with each
stage corresponding to a chapter:

e Chapter 3 describes, independent of OS specifics like fel@mmunication, what prop-
erties a DIFC system ought to uphold. The logical startinigtpfor such a definition is
the IFC literature [5, 7, 17], in which processes commumigetirwise with one-way mes-
saging. A new and simplified model, called the Flume modekreds the original IFC
definitions to accommodate decentralized declassificdéisin DIFC).

e Chapter 4 states this model formally in the Communicatingusatial Processes (CSP)
Process Algebra [46].

e Chapter 5 then proves that the Flume model fits a standardtaefinf non-interference
that is, the processes who have seen secret data cannotriyawvepact on the processes
who haven’t. Such formalisms separate Flume from other Ip€ating systems whose
APIs encapsulate wide data leaks.

e Chapter 6 details a practical system that fits the modehdiiin details like reliable, flow-
controlled interprocess communication (IPC) and file 1/O.

The new OS abstraction that allows Flume to fit DIFC to a Uile-IAPI is theendpoint
Flume represents each resource a process uses to comraueicgt pipes, sockets, files, net-
work connections) as an endpoint. A process can configurendpoit, communicating to
Flume what declassification policy to apply to all future eoomication across that endpoint.
However, Flume constrains endpoints’ configurations so phacesses cannot leak data that
they do not have privileges to declassify. For instanceoagss that has a right to declassify a
secret file can establish one endpoint for reading the silereind another endpoint for writing
to a network host. It can then read and write as it would udiegstandard API. Flume dis-
allows a process without those declassification privildgas holding both endpoints at once.
Chapter 6 covers endpoints in detalil.

23

1.4.2 Implementation

Flume is implemented as a user-space reference monitorrarx with few modifications to
the underlying kernel. Legacy processes on a Flume systarmoae data as they always did.
However, if a process wishes to access data under Flumetsotom must obey DIFC con-
straints, and therefore cannot leak data from the systesssi@uthorized to do so. Unlike prior
OS-level DIFC systems, Flume can reuse a kernel implemenjadriver support, SMP sup-
port, administrative tools, libraries, and OS servicesHME, NFS, RAID, and so forth) already
built and supported by large teams of developers. And beciusaintains the same kernel
API, Flume supports existing Linux applications and lilear The disadvantage is that Flume’s
trusted computing base is many times larger than AsbesipsisStar’s, leaving the system vul-
nerable to security flaws in the underlying software. Alslonie’s user space implementation
incurs some performance penalties and leaves open some cbaanels solvable with deeper
kernel integration. Chapter 7 discusses implementatitailde

1.4.3 Application and Evaluation

To evaluate Flume’s programmability, we ported MoinMoinkio the Flume system. As men-
tioned above, MoinMoin Wiki is a feature-rich Web documelmargng system (91,000 lines of
Python code), with support for access control lists, indgxiWeb-based editing, versioning,
syntax highlighting for source code, downloadable “skiet¢c. The challenge is to capture
MoinMoin’s access control policies with DIFC-based eqléws, thereby moving the security
logic out of the main application and into a small, isolatedwsity module. With such a refac-
toring of code, only bugs in the security module (as opposeithé large tangle of MoinMoin
code and its plug-ins) can compromise end-to-end security.

An additional challenge is to graft a new policy onto MoinMaiode that could not exist
outside of Flumeend-to-end integrity protectiofThough MoinMoin can potentially pull third-
party plug-ins into its address space, cautious users rdgghtand that plug-ins never touch (and
potentially corrupt) their sensitive data, either on the wewo the system, or on the way out. We
offer a generalization of this policy to include differentégrity classes based on which plug-ins
are involved.

FlumeWiki achieves these security goals with only a thoddare modification to the origi-
nal MoinMoin system (in addition to the new thousand-linegsecurity module). Though prior
work has succeeded in sandboxing legacy applications [dri&)writing them anew [21], the re-
placement of an existing dataflow policy with a DIFC-based isra new result. The FlumeWiki
TCB therefore looks different from that of original MoinMuoi it contains the Flume system,
and the security module, but not the bulk of MoinMoin’s apation-specific code. MoinMoin’s
original TCB does not contain Flume, but it does contain aifMoin code, including any plug-
ins installed on-site. As a result of this refactoring of @B, FlumeWiki solves security bugs
in code it inherited from the original MoinMoin, as well asepiously unreported MoinMoin
bugs discovered in the process of implementing FlumeWikiager 8 describes the FlumeWiki
application in greater detail.

As described in Chapter 9, experiments with FlumeWiki orukishow the new system per-

24

forms within a factor of two of the original. Slow-downs angedprimarily to Flume’s user-space
implementation, though the Flume design also accommodatesl-level implementations.

1.5 Contributions
In sum, this thesis makes the following technical contiima:

e New DIFC rules that fit standard operating system abstmagtieell and that are simpler
than those of Asbestos and HiStar. Flume’s DIFC rules argecto rules for “central-
ized” information flow control [5, 7, 17], with small extewsis for decentralization and
communication abstractions found in widely-used opegasiystems.

e A formal model and proof of correctness.

e A new abstraction—endpoints—that bridge the gap betweéfCland legacy Unix ab-
stractions.

e The first design and implementation of process-level DIFCsfock operating systems
(OpenBSD and Linux). Flume is useful for securing Web sidéesl also other client- and
server-side software.

¢ Refinements to Flume DIFC required to build real systemd) siscmachine cluster sup-
port, and DIFC primitives that scale to large numbers ofsiser

e A full-featured DIFC Web site (FlumeWiki) with novel end-emnd integrity guarantees,
composed largely of existing code.

1.6 Limitations, Discussion and Future Work

This thesis has important limitations. Thought it presenfsrmal Flume model, there are no
guarantees that the implementation actually meets the Im&den if it did, Flume is suscep-
tible to covert channels, such iming channelsquota-exhausting channels, wallbanging, etc.
Though Flume is simpler in its mathematics and specificatiban some other recent IFC sys-
tems, it is still significantly more complicated at this staban standard Unix. Indeed, Flume
can run atop a Linux system and coexist with many legacy egipdins, but not all Unix system
calls fit the DIFC model, and hence, Flume’s support of stahddls is approximate at best.
Similarly, not all of FlumeWiki’s features work; some arenflamentally at odds with DIFC
guarantees (e.g., hit counters; see Section 8.9).

Other techniques might also solve some of the same problatnsith less overhead. Some
design paths considered but not taken are: building DIF€ antuntime (like Python’s) rather
that into the operating system; protecting programmergagtneir own bugs rather than gener-
alizing to the more prickly defense against malicious cedenguage-based approach like Jif’s
with finer-grained labeling.

25

Chapter 10 discusses these limitations as well as the maiBvpooutcomes of the Flume
experience: lessons gleaned, ideas about programmaitityracticality, and some projections
for future projects. The end goal of this research is to bsédure and extensible server-based
computing platforms. We discuss how Flume has fared in thd¢a@vor, and what work remains.

26

Chapter 2

Related Work

Attacks against Web services have kept security researdhesy. In answer the bonanza of
weaknesses that dog Web-based system today (surveyedtiorSkd), a similarly diverse set
of solutions has sprung up.

2.1 Securing the Web

Securing the Channel Many proposals exist to combat phishing, some using brobased
heuristics [13], others using mobiles phones as a secom@m@titation factor [75]. In general,
no solution has found either widespread acceptance oriadppind indeed phishing promises
to be an important problem for years to come. We offer no gwoiun this thesis but believe the
problem is orthogonal to those we consider.

As hardware manufacturers continue to expand the comprgsaurces available to applica-
tions (even with dedicated cores for cryptography), SSInokaprotection should become avail-
able to more Web sites. And improved user interfaces [84]dmuticated infrastructure [107]
has taken aim at attacks that attempt to distribute bogusc8gificates.

Securing the Browser As for browser-based attacks, such as XSS, XSRF, and dyidan-
loads, the most obvious solutions involve better sanitpabn the server-side, using packages
like HTML purify [110]. Of course, servers cannot sanitiz& ML in i f r ames they did not
create and cannot modify (like third party advertisemerdasy with current technology are at
the mercy of those third parties to provide adequate sgcpritections. Research work like
MashupOS gives the browser finer-grained control over ita sacurity, at the cost of back-
wards compatibility [105].

Securing the Server As for the server-side, over time, system administratoxe lieveloped
practices to mitigate the risks of well-understood attasksh as data-center firewalls, and two-
factor authentication for administrators [93]. Admin&ttrs can apply security patches to close

27

28

holes in services that listen on network ports, and holelsarkernel that allow privilege escala-
tion [3].

The remaining issue is one of the most challenging, and thgesuof this thesis: how to
secure the custom-written server-side software that midee¥/eb site work while upholding a
desired security policy. Weapplicationcode is mushrooming, especially as new toolkits (e.g.
Ruby on Rails [97] and Django [30]) open up Web programmingricever-larger pool of de-
velopers, many of whom are not well-versed in secure progriaug principles. The question
becomes, what tools should the underlying infrastructhbeeit(the operating system, compilers
or interpreters) give application developers to help theitevgeecure code? And can these tech-
niques apply to Facebook-like architectures, in which ttedethird party developers contribute
application code?

One vein of work in this direction is backwards-compatilgelgity improvements to stock
operating systems and existing applications, such asetafferrun protection (e.g., [14, 55]),
system call interposition (e.qg., [34, 49, 80, 32, 102])lason techniques (e.qg., [35, 51]) and vir-
tual machines (e.qg., [37, 104, 108]). Flume uses some of tlieetiniques for its implementation
(e.g., LSMs [109] and systrace [80]). Few if any of these mégqples, however, would pro-
tect against bugs high up in the Web software applicatiockstsay in MoinMoin code). That
is, many exploitable Web applications behave normally ftbm perspective of buffer-overrun
analysis or system call interposition, even as they serzkAldata to Bob’s network connection,
against Alice’s wishes. This thesis instead explores degpenges to the API between (Web)
applications and the kernel, allowing applications to egprhigh-level policies, and kernel in-
frastructure to uphold them. This approach is heavily imftgal by previous work in mandatory
access control (MAC).

2.2 Mandatory Access Control (MAC)

Mandatory access control (MAC) [91] refers to a system scplan in which security policies
aremandatoryand not enforced at the discretion of the application wsitén many such sys-
tems, software components may be allowed to read privatetdatare forbidden from revealing
it. Traditional MAC systems intend that an administratdraseingle system-wide policy. When
servers run multiple third-party applications, howevehninistrators cannot understand every
application’s detailed security logic. Decentralizedommfation flow control (DIFC) promises
to support such situations better than most MAC mechanibetguse it partially delegates the
setting of policy to the individual applications.

Bell and LaPadula describe an early mathematical model ®&®EN#] and an implementa-
tion on Multics [5]. Their work expresses two succinct rullest capture the essence of manda-
tory security. The first is the simple security property, oo ‘read-up:” that when a “subject”
(like an active process) “observes” (i.e. reads) an “obj@ike a static file), the subject’s secu-
rity label must “dominate” (i.e. be greater than) that of diigect. The second is theproperty,
or “no write-down:” that a subject’s label must dominate Iditeel of any object that it influences.
Biba noted that similar techniques also apply to integritiy [Denning concurrently expressed
MAC ideas in terms of mathematical lattices [17] but advedat compile-time rather than run-

29

time approach, for fear of covert channels (see Section 3.4)

SELinux [62] and TrustedBSD [106] are recent examples afkstiperating systems modi-
fied to support many MAC policies. They include interfacasagecurity officer to dynamically
insert security policies into the kernel, which then linietbehavior of kernel abstractions like
inodes and tasks [98]. Flume, like SELinux, uses the Linwugsy module (LSM) framework
in its implementation [109]. However, SELinux and Trust&iBdo not allow untrusted appli-
cations to define and update security policies (as in DIFGQELinux and TrustedBSD were to
provide such an API, they would need to address the chakecgesidered in this thesis.

TightLip [111] implements a specialized form of IFC that eats privacy leaks in legacy
applications. TightLip users tag their private data anchilliip prevents that private data from
leaving the system via untrusted processes. Like TightEipme can also be used to prevent
privacy leaks. Unlike TightLip, Flume and other DIFC systefe.g. Asbestos and HiStar)
support multiple security classes, which enable safe camgling of private data and security
policies other than privacy protection.

IX [66] and LOMAC [31] add information flow control to Unix, thagain with support for
only centralized policy decisions. Flume faces some of #mesUnix-related problems as these
systems, such as shared file descriptors that become stirageels.

2.3 Specialized DIFC Kernels

One line of DIFC research, taken by the Asbestos [9, 21] artadi[113] projects, is to re-
place a standard kernel with a new security kernel, ther hugl eventually exposing DIFC to
applications.

Asbestos applies labels at the granularity of unreliablesages between processes, while
HiStar’s interface is at a lower level (that of threads, mgmsegments and control-transfer
“gates”). Flume's labels are influenced by Asbestos’s andrjporate HiStar’s improvement that
threads must explicitly request label changes (since oitdibel changes are covert channels).
Asbestos and HiStar labels combine mechanisms for privategrity, authentication, declassi-
fication privilege, and port send rights. Flume separategl{minates) these mechanisms in a
way that is intended to be easier to understand and use.

The HiStar project in particular has succeeded in exposisigradard system call interface
to applications, so that some applications work on HiStahag would under standard Unix.
HiStar implements an untrusted, user-level Unix emulatayer using DIFC-controlled low-
level kernel primitives. A process that uses the Unix enutalayer but needs control over the
DIFC policy would have to understand and manipulate the nmgpipetween Unix abstractions
and HiStar objects. The complication with the HiStar apphpdnowever, is that the specifics
for managing information flow are hidden deep in the systdmraly. If a legacy application
component (such as a Web server, a Web library, or an oftied-\Web application) causes a
security violation when run on HiStar’s library, it would loéficult to refactor the application
to solve the problem. Such controls could be factored intevalibrary, and this thesis answers
the question of what such a library might look like.

As new operating systems, Asbestos and HiStar have smallBsThan Flume, and can

30

tailor their APIs to work well with DIFC. However, they doréutomatically benefit from main-
stream operating systems’ frequent updates, such as newdna support and kernel improve-
ments.

2.4 Language-Based Techniques

DIFC originated as a programming languages technique. $ged Liskov introduced a de-
centralized information model [69], thereby relaxing thstriction in previous information flow
control systems that only a security officer could declgssiFlow and its successor Jif are Java-
based programming languages that enforce DIFC within arpnogproviding finer-grained con-
trol than Flume [70]. In Jif, the programmer annotates \@eaeclarations, function parameters,
function return values, structure members, etc., to desevhat type of secrecy and integrity that
data ought to have. The compiler then type-checks the pmogpaensure that it does not move
data between incompatible secrecy and integrity categotiesuch a system, declassifiers are
class methods (rather than processes). Programs thathwok-and have correct declassifiers
are believed to be secure.

There are several benefits to this approach. First, sedabigs can apply to data elements as
small as a byte, whereas in operating system-based tedmithe smallest labeled granularity
is a process (in the case of Asbestos and Flume) or threathdicdse of HiStar). Second,
Jif can limit declassification privileges to specific fumet{s) within a process, rather than (as
with Flume) to the entire process. Jif programs can also rutegacy operating systems, and
some work has shown how Jif’s computations can be split acnogltiple processes and/or
machines [112]. Swift, based on Jif, focuses on splittingo\&pplications between the server
and browser. The technique is to write an application inafif] then automated tools generate
server-side Java and client-side JavaScript that uphelthtended security policy [11].

On the other hand, Jif requires applications (such as Wefrssr{12] and mail systems [44])
to be rewritten while Flume provides better support for gipyg DIFC to existing software.
OS-based approaches can also accommodate dynamicalty sggpting languages like Perl,
Python, PHP, Ruby, and even shell scripting. These languageexactly the ones that many
programmers call upon when developing Web applicationsallyi language-based approaches
like Jif still depend upon the underlying operating systemaccess to the file system, network,
and other resources available through the system calfactr As Hicks et al. point out, the
Jif work is indeed complementary to progress in mandatopesg control for the operating
system [45].

2.5 Capabilities Systems

Capabilitiessystems propose another technique for securing kernel$ighdr level applica-
tions. In their seminal work on the “principle of least plage” [91], Saltzer and Schroeder
argue that processes should possess as few privileges siblpaghen performing their task;
in the case of compromise, such processes are less useftddkens than those that own many

31

privileges they do not require. By contrast, operatingeystlike Linux and Windows implicitly
grant all manner of privileges (i.e., capabilities) to apgtions, which often misuse them due to
bugs or misconfiguration [43]. For example, if Alice runsigile on Windows, the program
can “scan [her] email for interesting tidbits and them oneRathe highest bidder” [67]. Ca-
pabilities systems like KeyKOS [53], ErOS [96] and Coyot@S][require processes to request,
grant and manage these privileges (i.e. capabilities)i@stpl The assumption is that if kernel
components and/or applications must more carefully mattegjecapabilities to complete their
tasks, they are less likely to request (and lose controlagabilities they do not need.

The core idea behind capability systems—that system reesare individually addressable
and accessible via capabilities—does not solve the prolebgoored in this thesis. Imagine
building a Web-based application like MoinMoin with caddids. When Alice logs onto the
system, an instance of MoinMoin launches with Alice’s read &rite capabilities, meaning it
can read and write those files belonging to Alice. But suchpgli@ation can also copy Alice’s
data to a temporarily, world-readable file in the Wiki narmeesy allowing Bob to later access
it. In other words, capability-based policies do not, in afithemselves, capture the transitivity
of influence that MAC systems do: they do not track Alice’saditrough the Wiki code to the
world-readable file.

There is, however, an historical confluence between capabitd MAC systems. Capa-
bility systems like KeyKOS have succeeded in implementingQVpolicies as a policy in a
reference monitor on top of a capabilities-based kernelnv€ely, the capabilities literature
has influenced some variants of MAC like Asbestos [21] (dkedrabove). These system have
a default security policy as in Bell-LaPadula, but procegbat hold the appropriate capabilities
are permitted to alter this policy. Thus, MAC and capaletitprove complementary.

32

Chapter 3

The Flume Model For DIFC

The Flume Model for DIFC describes an interface between arabing system kernel and
user-space applications. Like typical OS models, Flums&umes a trust division between
the kernel and applications: that the kernel ought be coaed bug free; and that the kernel
can defang buggy or malicious user-space applicationse MRC models (see Section 2.2),
Flume’s requires that the kernel track sensitive infororafiow through an arbitrary network of
user-space applications. Asdecentralizednformation flow control, the Flume model permits
some (but not all) of those applications to act as declassifeelectively disclosing sensitive
information.
This chapteinformally specifies Flume’s DIFC model, describing how it answers tia-c

lenges listed in Section 1.3. In particular:

e programming language agnosticism, in answer to Challenge 1
e simplicity, in answer to Challenge 4;

e and mitigation of covert channels, in answer to Challenge 5.

We defer a discussion of to Challenges 2 and 3 (compatilvilitiy Unix primitives) to Chap-
ter 6.

3.1 Tags and Labels

Flume usedagsandlabelsto track data as it flows through a system. [ebe a very large

set of opaque tokens calleédgs A tagt carries no inherent meaning, but processes generally
associate each tag with some category of secrecy or intedidig b, for example, might label
Bob’s private data.

Labelsare subsets of . Labels form a lattice under the partial order of the subskt-r
tion [17]. Each Flume procegshas two labelsS,, for secrecy and,, for integrity. Both labels
serve to (1) summarize which types of data have influepdedhe past and (2) regulate where
p can read and write in the future. Consider a progeand a tag. If ¢t € .S, then the system

33

34

conservatively assumes thahas seen some private data tagged witim the future p can read
more private data tagged without requires consent from an authority who controbsefore it
can reveal any data publicly. If there are multiple tagS,jinthenp requires independent consent
for each tag before writing publicly. Procgss integrity labell, serves as a lower bound on the
purity of its influences. It € I, then every input tp has been endorsed as having integrity for
t. To maintain this property going forward, the system onlgwas$ p to read from other sources
that also have in their integrity labels. Files (and other objects) alseehgecrecy and integrity
labels; they can be thought of as passive processes.

Although any tag can appear in any type of label, in practezexy and integrity use pat-
terns are so different that a tag is usgttherin secrecy labelsr in integrity labels, not both. We
therefore sometimes refer to a “secrecy tag” or an “intgdag”.

Example: Secrecy Alice and Bob share access to a server but wish to keep soradiie
not all) secret from each other. Misbehaving software cangdizate even this basic policy; for
example, Bob might download a text editor that, as a sidegfp®sts his secret files to a public
Web site, or writes them to a public file It np. Under the typical OS security plan, Bob can
only convince himself that the text editor won’t reveal healif he (or someone he trusts) audits
the software and all of its libraries.

With information flow control, Bob can reason about the adittmis)behavior without au-
diting its code. Say that talgrepresents Bob’s secret data. As described below, Bobcakpli
trusts some processes to export his data out of the systemmoip consider all other (i.eun-
trusted processes, like the text editor. The following four prdigsr suffice to protect Bob’s
data. For any procegs

1. if p reads his secret files, thére S,,;
2. pwith b € S, can only write to other processes (and filesjith b € S,
3. Any untrusted procegscannot removeé from .S,

4. p with b € S, cannot write over the network (or to any other destinationtside the
system).

If all four conditions hold, then a simple inductive argurhshows that the editor cannot leak
Bob’s data from the system.

Example: Integrity A complementary policy involves integrity: how to prevemitiustwor-
thy software from corrupting important files. Say Charlies lsministrator privilege on his
machine, allowing him to edit sensitive files (e/get ¢/ r ¢, the script that controls which pro-
cesses run with superuser privileges when a machine boptslopever, other users constantly
update libraries and download new software, so Charlieslackfidence that all editors on the
system will faithfully execute his intentions when he editt ¢/ r ¢c. A path misconfiguration
might lead Charlie to access a malicious editor that shanesree with a responsible editor, or a

35

good editor that links at runtime against phony librariesrf@aps due to abD_L|I BRARY_PATH
misconfiguration).

Secrecy protection won't help Charlie; rather, he needsdrte-end guarantee thall files
read when editing et c/ r ¢ are uncorrupted. Only under these integrity constraintsiishthe
system allow modifications to the file. Say that an integaty:t represents data that is “vendor-
certified.” As described below, some processes on the syst@ndorsefiles and processes,
giving them integrityv. For now, consider all other processes, like the text edibiarlie seeks
four guarantees for each such procgss

1. if p modifies/ et ¢/ r c thenv € [,;

2. a procesg with v € I, cannot read from files or processes that lagktegrity, and only
uncorrupted files (like binaries and libraries) haviategrity;

3. a procesp cannot add to I,;

4. andp with v € I, cannot accept input from uncontrolled channels (like thevoek).

If all four conditions hold, Charlie knows that changed &t c/ r ¢ were mediated by an un-
corrupted editor.

3.2 Decentralized Privilege

Decentralized IFC (DIFC) is a relaxation of centralized (waditional”) IFC. In centralized
IFC, only a trusted “security officer” can create new tagdtsct tags from secrecy labels
(declassifyinformation), or add tags to integrity labelsndorseinformation). In Flume DIFC,
any process can create new tags, which gives that procegwitliege to declassify and/or
endorse information for those tags.

3.2.1 Capabilities

Flume represents privilege using twapabilitiesper tag. Capabilities are objects from the set
O =T x{—, +}. For tagt, the capabilities are™ andt~. Each processwnsa set of capabilities
O, C O. A process with™ € O, ownsthet¢™ capability, giving it the privilege to adtlto its
labels; and a process with € O, can remove from its labels. In terms of secrecy! lets

a process add to its secrecy label, granting itself the privilege to reeesecret data, while

t~ lets it removet from its secrecy label, effectively declassifying any sé¢data it has seen.
In terms of integrity,t~ lets a process remowefrom its integrity label, allowing it to receive
low-t-integrity data, whilet™ lets it addt to its integrity label, endorsing the process’s current
state as hight-integrity. A process that owns both and+~ hasdual privilegefor ¢ and can
completely control how appears in its labels. The sBt, where

D,2{t|tt €0, A t” €0}

36

represents all tags for whighhas dual privilege.

Any process can allocate a tag. Tag allocation yields a rahdeelected tag € 7 and sets
O, «— O,U{t", ¢}, grantingp dual privilege fort. Thus, tag allocation exposes no information
about system state.

3.2.2 Global Capabilities

Flume also supports giobal capability set). Every process has access to every capability in
O, useful for implementing key security policies (descrilie&ection 3.2.3).
A processp’s effective set of capabilities is given by:

0,20,U0
Similarly, its effective set of dual privileges is given by:
D,2{t|tT €0, Nt” €0,}

Tag allocation can update; an allocation parameter determines whether the new tags-,
or neither is added t® (and thus to every current and future proces3.

Lest processes manipulate the sharedstt leak data, Flume must control it carefully. A
first restriction is that processes can only add tags tehen allocating tags. If Flume allowed
arbitrary additions ta), a proces could leak information to a processby either adding
or refraining from adding a pre-specified tagdo A second restriction is that no procgss
can enumerat® or O,. If Flume allowed enumeratiory could poll || O || while ¢ allocated
new tags, allowing; to communicate bits tp. Processes can, however, enumerate their non-
global capabilities (those i@,,), since they do not share this resource with other proce Sees
Chapter 4 for a formal treatment of potential pitfalls indddyO.

Two processes can transfer capabilities so long as they @amanicate. A process can
freely drop non-global capabilities (though we add a restm in Section 6.2). And finally,
some notation for manipulating sets of capabilities: foetaod capabilitiesO C O, we define:

Ot 2 {t|tt €0}
O~ £{t|t €0}

3.2.3 Examples and Policies

Secrecy Bob can maintain the secrecy of his private data with a paédiedexport protection
One of Bob’s processes allocates the secrecybtaged to mark his private data; during the
allocation,b™ is added ta0, but only the allocating trusted process gets Thus, any process
p can addb to S, and therefore reablsecret data, but only processes that dwn(i.e., Bob’s
trusted process and its delegates) can declassify thisaddtaxport it out of the system. (We
describe how to createsecret data below.)

A related but more stringent policy is calleglad protection A process allocates a secrecy

37

tagt, but neithert™ nor ¢~ is added taD. By controllingt*, the allocating process can limit
which other processes caew t-secret data, as well as limiting which other processes can
declassifyt-secret data. Read-protection is useful for protectingtsiad very sensitive secrets,
like passwords. That is, if Alice thinks that her system hames low-capacity covert channels,
she must concede that Bob can leak her export-protected the system, if given the time and
resources. But Bob cannot see her read-protected data firghplace, and thus, it is better
protected against covert channels (including timing cleéa)ri113].

Integrity Another policy,integrity protection is suitable for our integrity example. A “certi-
fier” process allocates integrity tag and during the allocation;~ is added ta). Now, anyp
process camemovev from I,,, but only the certifier has™. The ability to addv to an integrity
label—and thus to endorse information as higlmtegrity—is tightly controlled by the certifier.
Charlie requests of the certifier to ediet ¢/ r ¢ using an editor of his choice. The certifier
forks, creating a new process withintegrity; the child drops the™ capability and attempts to
execute Charlie’s chosen editor. Withe I, andv™ ¢ O,, the editor process can only read
high-integrity files (be they binaries, libraries, or configtion files) and therefore cannot come
under corrupting influences.

These three policies—export protection, read protectod,integrity protection—enumerate
the common uses for tags, although others are possible.

3.3 Security

The Flume model assumes many processes running on the sachaenand communicating
via messages, or “flows”. The model's goal is to track data figwregulating both process
communication and process label changes.

Definition1 (Security in the Flume modelA system is secure in the Flume model if and only if
all allowed process label changes are “safe” (Definitionr2) all allowed messages are “safe”
(Definition 3).

We define “safe” label changes and messages below. Thoughsystems might fit this general
model, we focus on the Flume system in particular in Section 6

Safe Label Changes In the Flume model (as in HiStar), only procgsstself can change
S, and I, and must request such a change explicitly. Other modedes allprocess’s label to
change as the result of receiving a message [21, 31, 66}nplicit label changes turn the labels
themselves into covert channels [17, 113] (see Section Y/then a process requests a change,
only those label changes permitted by a process’s capebitte safe:

Definition 2 (Safe label change)For a process, let L be S, or I,,, and letL’ be the new value
of the label. The change fromto L' is safeif and only if:

L'—LC(0,)" and L—-L C(0,)

38

Web App [«— Declassifier «=—> Web Server

S={t} S={?} S={}
D={} D = {t} D={}

Figure 3-1: An example Web system; what should the declassifabel be?

For example, say procepswishes to subtract tagfrom .S, to achieve a new secrecy label
S;. In set notationt € S, — S;,, and such a transition is only safegifowns the subtraction
capability fort (i.e.t~ € O,). The same logic holds for addition, yielding the above folan

3.3.1 Safe Messages

Information flow control restricts process communicationptevent data leaks. The Flume
model restricts communication among unprivileged proegss in traditional IFGy can send a
message tq only if S, C S, (“no read up, no write down” [5]) and, C I,, (“no read down, no
write up” [7]).

For declassifiers—those processes that hold special ggest—these traditional IFC rules
are too restrictive. Consider Figure 3-1 for example. I8 #iinple example, a Web application
runs with secrecys = {t}, meaning it can read and compute on data tagged with setrecy
Since the application is unprivileged(= {}), it cannot export this data on its own; it relies on
the privileged declassifier{ = {¢}) onits right to do so. If the declassifier decides to dedgssi
it sends the data out to the network via the Web server, whick with an empty secrecy label.
Thus, data can flow in this example from high £ {¢}) to low (S = {}) with the help of the
declassifier in the middle.

The question becomes, what should the declassifier's selaieel be? One idea is for the
declassifier to explicitly switch betwee$) = {} andS = {t¢}, as it communicates to its left
or right. Though this solution sometimes works fanding it is impractical for asynchronous
receives the declassifier has no way of knowing when its left or rigattper will send, and
therefore cannot make the necessary label change aheateofAnother idea is that the declas-
sifier run with.S = {¢} and only lower its label t& = {} when it sends to its right. But this
approach does not generalize—imagine a similar scenanchioh the Web server runs with
secrecyS = {u} and the declassifier has dual privileges for bioimd«. This second approach
is also ungainly for multithreaded declassifiers with biagk/O operations.

Flume’s solution is a general relaxation of communicatigies for processes with privilege,
like declassifiers. Specifically, if two processasuld communicate by changing their labels,
sending a message using the traditional IFC rules, and #starmg their original labels, then
the model can safely allow the processes to communicat®withbel changes. A process can
make such a temporary label change only for tag®jn for which it has dual privilege. A
procesp with labelsS,, I, would get maximum latitude in sending messages if it wereweet
its secrecy ta5, — D, and raise its integrity td, U D,,. It could receive the most messages if it
were to raise secrecy 8, U D,, and lower integrity td,, — D,

39

The following definition captures thes$gpotheticallabel changes to determine what mes-
sages are safe:

Definition 3 (Safe messageA message fronp to ¢ is safeiff

S,—D,CS,uD, and I,—D,CI,UD,

For processes with no dual privileg®{ = D, = {}), Definition 3 gives the traditional IFC
definition for safe flows. On the other handpimust send with a hypothetical secrecy label of
S, — D,, thenp is declassifying the data it sends¢olf ¢ must receive with secrecy, U D,,,
then it is declassifying the data it received frpmin terms of integrity, ifp must use an integrity
label I, U D,, then it is endorsing the data sent, and similaglis endorsing the data received
with integrity labell, — D,.!

This definition of message safety might raise fearinudlicit declassification A process
p with a non-emptyD,, is alwaysdeclassifying (or endorsing) as it sends or receives messag
whether it intends to or not. The capabilities literaturersgly discourages such behavior, claim-
ing that implicit privilege exercise inevitably results ‘iconfused deputy problems,” in which
attackers exploit honest applications’ unintended useiviigges [43]. In defining the Flume
model, we present rules that make communication as pexmiss possible without leaking
data. Chapter 6 describes how the Flume implementatiomsitbe confused deputy problem,
requiring applications to explicitly declassify (and ersl) data as they send and receive.

3.3.2 External Sinks and Sources

Any data sink or source outside of Flume’s control, such asvote host, the user’s terminal, a
printer, and so forth, is modeled as an unprivileged progcesgh permanently empty secrecy
and integrity labelssS, = I, = {} and alscO, = {}. As a result, a procegscan only write to
the network or console if it could reduce its secrecy labgljtgthe only label withS, C 5,),
and a process can only read from the network or keyboard d@luldcreduce its integrity label to
{} (the only label withl,, C I,).

3.3.3 Objects

Objects such as files and directories are modeled as precestbeempty ownership sets, and
with immutablesecrecy and integrity labels, fixed at object creation. Acpssp’s write to an
objecto then becomes a flow fromto o; reading is a flow sent frora to p. When a procesg
creates an objeet, p specifieso’s labels, subject to the restriction thamust be able to write
to 0. In many caseg; must also update some referring object (e.g., a processsngitlirectory
when creating a file), and writes to the referrer must obeyntrenal rules.

!Declassification or endorsement can also occur when a mrpamsikes actual (rather than hypothetical) label
changes t&), or I,,, respectively. See Section 3.3.

40

3.3.4 Examples

Secrecy We now can see how the Flume model enforces our examplegitye@guirements.
In the editor example, Bob requires that all untrusted pses like his editor (i.e., thogefor
whichb~ ¢ O,) meet the four stated requirements from Section 3.1. Indgi Ibelow, recall
thatb is an export-protect tag; therefobe € O and alsoh™ ¢ O. For unprivileged processes
like Bob's editor:b™ ¢ O,, and thus ¢ D,

1. If processp reads Bob's secret files, thénc S,,: Bob’s secret files are modeled as objects
fwithb € Sy. Sinceb™ ¢ O, any process can write such files. Reading an object
is modeled as an information flow frorfito p, which requires that; C S, U D, by
Definition 3. Sinceb € Sy, andb ¢ Dp, it follows thatb € S,,.

2. Processp with b € S, can only write to other processes (or filegwith b € S;: If a
procesp with b € S, successfully sends a message to a progetsen by Definition 3,
S, — D, C S, U D,. Sinceb is in neitherD,, nor D, thenb € S,.

3. Processes cannot drop from .S,,: The process that allocatédkept b~ private, so by
Definition 2, only those processes that okvncan dropb from their secrecy labels.

4. Processp with b € S, cannot transmit information over uncontrolled channets un-
controlled channet has secrecy lab€l}, so by Definition 3, procegscan only transmit
information toz if it owns b, which it does not.

Note that sincé* € O, any process (like the editor) can alelb its secrecy label. Such a process
p can read Bob's files, compute arbitrarily, and write the Itesy data to files or processes that
also have in their secrecy labels. But it cannot export Bob’s secneisifthe system. Of course
if p ownedb™ or could coerce a process that did, Bob’s security could bgcomised. Similar
arguments hold for the integrity example.

Shared Secrets The power of decentralized IFC lets Flume users combine fhidiate data
in interesting ways without leaking information. Imaginsieple calendar application where
all system users keep private data files describing theiedddes. A user such as Bob can
schedule a meeting with Alice by running a program that erasihis calendar file and hers,
and then writes a message to Alice with possible meetingstiréhen Alice gets the message,
she responds with her selection. Such an exchange showddlremly what Bob and Alice
chose to reveal (candidate times, and the final time, respggtand nothing more about their
calendars. Alice and Bob both export-protect their caleffities with « andb respectively. To
reveal to Alice a portion of his calendar, Bob launches agseg with labelsS, = {a,b} and
O, = {b™ }. This process can read both calendar files, find possibleimgei&hes, lower itsS,
label to{a}, and then write the candidate times to a filabeledS; = {a}. Thoughf contains
information about both Alice and Bob’s calendars, only Alicprograms can export it—and
specifically, software running as “Bob” cannot export in(® it contains Alice’s private data).
When Alice logs on, she can use a similar protocol to read 8sbggestions, choose one, and

41

H
=

Sh = {}
P S ={} q
0110 0000

H
w

$={t S=1{}

»
Il
—~~
—

E
=

&
I

Figure 3-2: The “leaking” system initializes.

export that choice to Bob in a filkglabeledS, = {b}. Because at least one of Alice’s or Bob's
export-protection tag protects all data involved with tlkelenge, other users like Charlie can
learn nothing from it.

3.4 Covert Channels in Dynamic Label Systems

As described in Section 3.3, processes in Flume change l#tls explicitly; labels do not
change implicitly upon message receipt, as they do in Aebg&tl] or I1X [66]. We show by
example why implicit label changes (also known as“floatitgjels) enable high-throughput
information leaks.

Consider a procegswith S, = {t} and a procesg with S, = {}, both with empty own-
ership sets. In a floating label system like Asbesfosan send a message ¢p and g will
successfully receive it, but only after the kernel raisgs= {t}. Thus, the kernel can track
which processes have seen secrets taggedtwében if those processes are uncooperative. Of
course, such a scheme introduces new problems: what if gs@doesn’t want its label to
change fromS, = {}? For this reason, Asbestos also introduces “receive |alvefich serve
to filter out incoming traffic to a process, allowing it to asfainwanted label changes.

The problem with floating is best seen through example dures 3-2 through 3-4). Imag-
ine processes andq as above, withy wanting to leak the 4-bit secre0110” to ¢q. The goal is
for p to convey these bits tg without ¢’s label changing. Figure 3-2 shows the initializatign.
launches 4 helper processes throughg,), each with a label initialized t8,, = {}. ¢’s version
of the secret starts out initialized to &k, but it will overwrite some of those bits during the
attack.

Nextp communicates selected bits of the secret to the helgelf theith bit of the message
is equal ta0, thenp sends the messagé™to the processg;. If the ith bit of the message &, p
does nothing. Figure 3-3 shows this step. Note that as a m@fstdceiving thes® bits, ¢; and
q4 have changed labels! Their labels floated up frppto {¢}, as the kernel accounts for how
information flowed in the system.

42

0110
S={t 0

0000
S=1{

S]A = {t}

Figure 3-3:p sends a0” to g; if the 7th bit of the message 3.

0110
$=1{t

0110
S=1{

Figure 3-4: If¢; did not receive a0” before the timeout, it assumes an implicit™and writes

“1" to ¢ at position:.

43

In the last step (Figure 3-4), thg processes wait for a predefined time limit before giving
up. At the timeout, those who have not received messagean¢s) write al to thegq, at the
bit position that corresponds to their process IDgSarites al at bit position 2, ands writes
al at bit position 3. Note thaj; andg, do not write tog, nor could they without affecting’s
label. Now,q has the exact secret, copied bit-for-bit fromThis example shows 4 bits of data
leak, but by forkingn processesy andq can leakn bits per timeout period. Because Asbestos’s
event procesabstraction makes forking very fast, this channel on Aglsesan leak kilobits of
data per second.

What went wrong? Denning’s paper from 1976 [17] identifiesidsue:

There is one intrinsic problem with dynamic updating med$ras: a change in an
object’s class may remove that object from the purview ofer wghose clearance
no longer permits access to the object. The class-change ewe thereby be used
to leak information, e.g., by removing from the user’s pewia file meaning “0.”

Here, processeg, andq, disappeared frong’s view. Their absence means the first and the
fourth bit stay aD and therefore reflect the original secret.

Consider the behaviors of tlggprocesses to see why this particular attack would fail again
the Flume system. At the step depicted in Figure 3-3gtlsamust each make a decision: should
they change their labels t8, = {}, or should they leave their labels as is?;lthanges, then
it will receive messages from, but it won't be able to write t@. If ¢; does not change, then
it will never receive a message from Thus, its decision to write & or not write at all has
nothing to do withp’s message, and only to do with whether or not it decided tmgbdabels,
which it must dabeforereceiving word fronp. Thus, Flume appears secure against attacks that
succeeds in Asbestos’s floating label system. The next taptebs seek a formal proof of these
intuitions.

3.5 Summary

This chapter informally specified the Flume Model for opagisystems level decentralized
information flow control. The emphasis was on a labelingesysthat allows the kernel to track

data throughout a system (whether for security or integyitgrantees) while assigning certain
processes (declassifiers and endorsers) the privilegegistdte security policies. As in HiStar’s

Model, a key idea in Flume is that processes must set thedtdadxplicitly, rather than labels

floating dynamically as messages arrive. An important exastpows the advantages of Flume’s
approach.

44

Chapter 4

The Formal Flume Model

In the previous chapter, an example attack on an Asbestesyistem showed an inherent weak-
ness in the “floating” style of labels: with a careful procassangement, an attacker can leak
many bits of information by selectively sending or withhialgl communication. The same at-
tack appeared to fail against the Flume model, but no foresdaning proved that other attacks
could not succeed. This chapter and the next seek a formaatam between the Asbestos style
of “floating” labels and the Flume style of “explicitly spéed” labels. The ultimate goal is to
prove that Flume exhibitaon-interferenceproperties: for example, that processes with empty
ownership and whose secrecy label contdimsnnot in any way alter the execution of those
processes with empty labels. Such a non-interferencet nesplires a formal model of Flume,
which we build up here. Chapter 5 provides the proof that tlhenE Model meets a standard
definition of non-interference with high probability.

We present a formal model for the Flume System in the Commating Sequential Pro-
cesses (CSP) process algebra [46], with timing extensBBis The model captures a kernel, a
system call interface, and arbitrary user processes thanteract via the system call interface.
The model expresses processes communicating with oneearmthr IPC, changing labels, al-
locating tags, and forking new processes. In other wor@syihdel serves as a high-level design
document for kernel implementers, dictating which kerrethds are safe to expose to user-level
applications, where 1/0O can safely happen, which returresddom system calls to provide,
etc. Formal technigues can then show that the system calited® cannot be exploited to leak
information (as in Section 3.4’s attack on Asbestos). Thelehdoes not capture lower-level
hardware details, like CPU, cache, memory, network or disigae. Therefore, it is powerless to
disprove the existence of covert channels that modulate, CRthe, memory, network or disk
usage to communicate data from one process to another.

Figure 4-1 depicts the Flume model organization. At a higkllehe model splits each Unix-

like process running on a system (e.g., a Web server or téxireihto two logical components:
a user-space half (e.g/; andU;) which can take almost any form, and a kernel-space halftwhic
behaves according to a strict state machine (&.g,and; : K). The user-space half of a process
can communicate to its kernel half, and to other user-spameepses via a system call interface.
This interface takes the form of a CSP channel between theptaesses (e.gi.s and j.s).

45

46

i:QUEUES |-k kol switeH Sk 19 QUEUES

H --

PROCMGR

Figure 4-1: Two user-space processEs,andU;, in the CSP model for Flume:i : K and

j : K are the kernel halves of these two processes (respectiegMGRIs the process that
manages the global set of tags and associated privilEjgOCMGRmManages the process 1D
space, andWITCHenables all user-visible interprocess communication.osrdenote CSP
communication channels.

Inside the kernel, the kernel-halves of processes can caoncate with one another to deliver
IPCs initiated at user-space. Also inside the kernel, aajlpbocess TAGMGR manages the
circulation of tags and globally-shared privileges; arotiflobal processARROCMGR manages
the process ID space. The proc&&ITCHis involved with communication between user-level
processes. The remainder of this chapter seeks to fill oudetedls of this diagram, first by
reviewing CSP basics, and then by explaining details spdoifirflume.

4.1 CSP Basics

Communicating Sequential Processes (CSP) is a procedsalgseful in specifying systems as
a set of parallel state machines that sometimes synchroniegents. We offer a brief review of
it here, taking heavily from Hoare’s book [46]. Among the rnioasic CSP examples is Hoare’s
vending machine:

VMS=in25 — choc — VMS

This vending machine waits for the even®5, which corresponds to the input of a quarter into
the machine. Next, it accepts the evehbg which corresponds to a chocolate falling out of the
machine. Then it returns to the original state, with a ragarsall to itself. The basic operator at
use here is the prefix operator.4fis an event, and is a process, thefw — P), pronounced
“x then P,” represents a process that engages in ewvdhien behaves like proces$3. For a
processP, the notatiomy P describes the “alphabet” @?. It is a set of all of the events th&tis
ever willing to engage in. For exampleYMS= {in25, choc}.

For any CSP proceds, we can discuss the “trace” of events tlatvill accept. For the/MS

a7

example, various traces include:

The next important operator is “choice,” denoted By If = andy are distinct events, then:

(r = Ply— Q)

denotes a process that accepi@nd then behaves likB or acceptsy and then behaves lik@.
For example, a new vending machine can accept either a cdinw@put a chocolate, or accept
a bill and output an ice cream cone:

VMS2= (bill — cone — VMS2| in25 — choc — VMS2

CSP offers more general choice function (for choosing betwaany inputs succinctly), but the
Flume model only requires simple choice.

Related to simple choice are “internal nondeterministicic” and “external nondetermin-
istic choice,” denoted™” and “(0" respectively. In simple choice, the machine reacts eyactl
to events it fields from the machine’s user. In nondetermmishoice, the machine behaves
unpredictably from the perspective of the user, maybe lscthe machine’s description is un-
derspecified, or maybe because the machine is picking froam@om number generator. For
instance, a change machine might return coins in any ordperdling on how the machine was
last serviced:

CHNG = (in25 — (outl0 — outl0 — out5 — CHNG 1
outl0 — out5 — outl0 — CHNG))

That is, the machine takes as input a quarter, and returnslitmes and a nickel in one of two
orderings. The “external nondeterministic choice” opardias slightly different semantics but
does not appear in Flume’s model.

CSP provides useful predefined processes S8KOR the process that accepts no events,
and SKIP, the process that shows a successful termination and thevée likeSTOR Other
processes lik®IV, RUN andCHAOSare standard in the literature, but are not required here.

The next class of operators relate to parallelism. The iootat

PlQ
A

denotesP running in parallel withQ, synchronizing on events id.>! Meaning, a stream of

Parallelism differs between Hoare’s original CSP formiolatand more modern formulations, like Schneider's.
We use Schneider’s “interface parallelism” in this model.

48

incoming events can be arbitrarily assigned to eitResr (), assuming those events are not in
A. However, for events im, both P and Q) must accept them in synchrony. As an example,
consider the vending machine and the change machine rumpagallel, synchronizing on the
eventin25:

FREELUNCH= VMS | CHNG
{in25}

Possible traces for this new process are the various iaténigs of the traces for the two com-
ponent machines that agree on the ewe®b. For instance:

(in25, choc out10 out1Q out5, . ..
(in25, out1Q choc out1Q out5, . ..
(in25, out1Q out1Q choc out5, . ..
(in25, out1Q out10 out5, chog . . .
(in25, choc out1Q out5 outlq . . .
(in25, out1Q choc out5 out1q . . .
(in25, out1Q out5, choc out1Q . . .
(in25, out1Q out5, out1Q chog . . .

L~ o~~~ N e

are possible execution paths ffREELUNCH

Another variation on parallel composition is arbitraryernéaving, denoted:P || @. In
interleaving, P and (Q never synchronize, operating independently of one anotReff| Q) is
therefore equivalent t& ||, @, which means” and@ run in parallel and synchronize on the
empty set.

Processes that run in parallel can communicate with onéhanowerchannels A typical
channelc can carry various values, denotedc.v. The sending process accepts the evént
while the receiving process accepts the event after which stepr is set equal ta. Commu-
nication on a channel only works if the left process is in thedsstate and the right process is in
the receive state at the same time. If one process is at thenooivative state and the other is
not, the ready process waits until its partner becomes rdady slight deviation from Hoare’s
semantics, channels here are bidirectional: messagesawahindependently in either direction
across a channel. The Flume model uses channels extensively

The next important CSP feature is “concealment” or “hidirf€pr a process” and a set of
symbolsC', the proces$\C' is P with symbols inC' hidden or concealed. The eventdirthen
become internal transitions, that can happen without gitmresses being able to observe them.
Concealment can induaivergence—an infinite sequence of internal transitions. For instance
the process? = (¢ — P)\{c} diverges immediately, never to be useful again. The use of
concealment in the Flume model is careful never to inducerdence in this manner.

Concealment enables subroutines (or “subordination” iarEls terminology). For two pro-
cessP and(@ such thatoP C a(Q), the new proces® / Q is defined agP || Q)\aP. This
means that the subrouting is available within@, but not visible to the outside world. The
notationp : P // Q means a particular instangeof the subroutineP is available in@. Then

49

an event such gslx7y within Q means tha€) is calling subrouting with argumentr, and that
the return value is placed intp Within P, the event’z means receive the argumentrom the
caller, and the evenrfy means return the resujtto the caller.

A final important language feature is “renaming.” Given ag@ssP, the notation : P means
a “renaming” of P with all events prefixed by. That is, if the event!v appears inP, then the
eventi.clv appears in : P, wherei.c is the channet that's been renamed tac. Thus, for any
i # j, the alphabets of: P andj : P are disjoint:a(i: P) Na(j: P) = {}. This concludes
our whirlwind tour of CSP features. We refer the reader tordsg46], Schneider’s [92] and
Roscoe’s [85] books for many more details.

4.2 System Call Interface

We now return to our definition of the Flume CSP model. At a Haylel, user-level processes
communicate with the kernel and each either through a systhinterface. Each user-level
procesdJ; has access to the following calls over its chaninel

e { < create_tag(which)
Allocate a new tagt, and depending on the parametdrich, make the associated capa-
bilities for thatt globalIyAaccessibIe. Thusgyhich can be one oNone, Remove or Add.
ForARemove, addt~ to O, essentially granting it to all other processes;Aoid, addt™
to O. whichcannot specify botfiRemove andAdd at once.

e rc — change_label(which L)
Change the processighichlabel toL. ReturnOk on success anérror on failure.which
can be eitheBecrecy or Integrity.

e L — get label(which)
Read this process’s own label out of the kernel's data strest which can be either
Secrecy or Integrity, controlling which label is read.

e O — getcaps()

Read this process’s ownership set out of the kernel's datatates.

e 7 — send(j,msg X)
Send messagmsgand capabilitiesX to processj. Report success if the sender owns
the capabilities contained if and false otherwise. Thus, success is reported even if the
message send failed due to label checks.

e (msg X) < recv(j)

Receive messagasgand capabilitiesX from procesg. Block until a message is ready.

50

Y < select(t, X)

Given a set of process indicés, return a set” C X. For allj € Y, callingrecv(j) will
yield immediate results. This call will block untif is non-empty, or untit clock ticks
expire.

o j «— fork()

Fork the current process; yield a procgsdork returns;j in the parent process and 0 in
the child process.

e i — getpid()
Returni, the ID of the current process.

e drop_caps(X)
SetO; — O; — X.

The Flume model places no restrictions on what the userqgmatdf processes can do
other than: (1) such processes cannot communicate with @hehn; and (2) they can only
communicate with the kernel via the proscribed system caéiriace. Formally, leC; =
{c | (ew) € alU;} be the set of channels that has. For instancei.s € C; wherei.s is
the channel that processises to make system calls into the kernel. The first requineimel;
is that for allj # i, C; N C; = {}. Thatis, no process; can communicate directly with another
processlU;. Also, process cannot tamper with the system call interface of any othecgss
Jj, meaningj.s ¢ C; for all j, j # 4. Finally, each kernel procegs: K has four other chan-
nels,{j.b, .9, j.c, j.p}, all discussed below. No user process can access any ofc¢hasgels
directly. That s, for all, j:

{jb.1j.g.,j.c.jipy N Ci = {}

Of course,C; is not empty. For alf, i.s € C;, wherei.s is U;’s dedicated channel for sending
system calls to the kernel and receiving repli€$.can also contain channels from the process
U, to itself.

4.3 Kernel Processes

For each user process, there is an instantiation of the kernel procéSshat obeys a strict state
machine. We apply CSP’s standard technique for “relabtling interior states of a process:
U;'s kernel half is denoted: K. Because : K andj : K have different alphabets far# j,
their operations cannot interfere, and tli}sremains isolated frond/;. Each process: K will
take on a state configuration based upon the labels of thespmnding user procegs. We use
Ks 1,0 to denote a process with secrecy labetC 7, integrity label/ C 7', and ownership of
capabilities given by) C O.

At a high level, a kernel procegsstarts idle, then springs to life once receiving an actrati
message (ultimately because another process spawnead. dative, it receives either system

51

calls from its user half, or internal messages from othendleprocesses on the system. It
eventually dies when the user process exits. In CSP notation

K = b7(5,1,0) — Ks10

b is the channel thalS listens on for its “birth” message. It expects argumentshef fiorm
(S,1,0), to instruct it which labels and capabilities to start iteextion with. Subsequently,
Ks 1,0 handles the meat of the kernel process’s duties:

Ksro = SYSCALEk;o | INTRECV 10

whereSYSCALIs a subprocess tasked with handling all system calls| MRBRECMs theinter-
nal receivingsub-process, tasked with receiving internal messagesdtber kernel processes.

For any process IB, the subprocess K 1.0 handles system calls by listening for incoming
messages frorty; along a shared channgk. In the definition ofKs 7 o, each system call gets
its own dedicated subprocess:

SYSCALk 0 = NEWTAG 0 |
CHANGELABEL /¢ |
READMYLABEL 7.0 |
READMYCAPS; o |
DROPCAPS o |
SENDy /0 |
RECVs 1,0 |
SELECE, 0 |
FORKs 1,0 |
GETPIDs,/ 0 |
EXITs 1.0

Section 4.5 presents all of these subprocesses in moré detai

4.4 Process Alphabets

In the next chapter, we will prove properties about the sysia particular, that messages be-
tween “high processes” (those that have a specified tagimnstherecy label) do not influence the
activity of “low processes.” The standard formula for suecbggs is to split the system’s alphabet
into two disjoint sets: “high” symbols, those that the searBuences; and “low” symbols, those
that should not be affected by the secret. We must provideppeopriate alphabets for these
processes so that any symbol in the model unambiguousiyndeko one set or the other.

Consider some examples. Take procEssvith secrecy labeb; = {t} and; = {}. When
U; issues a system call (sayeate_tag(Add)) to its kernel halfi : K, the trace forU; is of the

52

form
(...,i.s!(create_tag,Add),...)

and the trace foi: K is of the form
(...,i.s?(create_tag, Add),...)

That is,U; is sending a messadereate_tag, Add) on the channel.s, andi : K is receiving
it. The problem, however, is that looking at these tracessdu# capture the fact thdf;'s
secrecy label contairtsand therefore thdt; is in a “high” state in which it should not affect low
processes. Such a shortcoming does not inhibit the accofdabg model, but it does inhibit the
proof of non-interference in Chapter 5.

A solution to the problem is simply to include a process’slalin the messages it sends.
That is, oncdJ; has a secrecy label &f = {t}, its kernel process should be in a state such as
K¢i,(1.03- When a kernel process is in this state, it will only receiystesm calls of the form
i.s?({t}, {}, create_tag, Add). Thus,U; must now send system calls in the form:

i.s!({t}, {}, create_tag, Add)

Of course, this message format requitésto know its currentS and I labels, but because
processes must request label changes explicitly, the wst@oms can keep track of what its
current labels are.

Messages of the form!(S,,...) and¢?(S,1I,...), are common (where is an arbitrary
channel), so we invent new notation:

cY (ai,...,an) 2 (S, 1,a1,...,a,)
S, 1

c A\ (ar,...,an) 2 (S, 1,a1,...,a,)
S, 1

In the context of a kernel procedss; o, we need not specifys and I explicitly; they are
inferred from the kernel’s state. That is, when appearisgiga proces& s 7 o, cY is defined:

cY(ay,...,an) = (S, 1,a1,...,a,)

And similarly fore A (---).

4.5 System Calls

We now describe the sub-processes that correspond to thédimd system calls. The first
system call subprocess handles a user process’s requasifeags. Much of this system call is
handled by the global tag managehkGMGR Note that after tag allocation, the kernel process
always transitions to a different state, reflecting the newmilpge(s) it acquired for tag. The

53

definition of TAGMGR(see Section 4.7) guarantees togt,, is non-empty.

NEWTAG ;0 = (s A (create_tag, w) —
g Y (Create—tag7 w)?(ta Onew) -
sYt—

K$,7,0U0men)

We split theCHANGELABELsubprocess into two cases, the first for changes to secrecy
labels, and the second for changes to integrity labels:

CHANGELABEL, ;0 = S-CHANGELABEL; o | I-CHANGELABEIs 1 0
Where:

S-CHANGELABEL o = (chk : CHECKg 0/
(s A (change_label, Secrecy, S) —
chK(S, S')7r —
if r
then s Y Ok — Kg/ 1.0
elses Y Error — Ks 1,0))
And:

I-CHANGELABEL ; o = (chk : CHECKs 1 0/
(s A (change_label, Integrity, I') —
chk(I,1")7r —
if r
then s Y Ok — Kg 1/ 0
elses Y Error — Ks.1,0))

In both cases, the user process specifies a new label, af@HEEK subroutine determines
if that label change is valid. In the success case, the k@moekess transitions to a new state,
reflecting the new labels. In the failure case, the kernetgss remains in the same state. The
CHECK process computes the validity of the label change basedeoprttess’s current capa-

54

bilities, and the global capabilities held by all processes

CHECKgs 1.0 =?(L, L") —
g!(check-, L — L' —07) —
glr —
g!(check+, L' — L —O%) —
gla —
(rANa) —
CHECKs.1.0

As we will see below, the global tag register repliese to (check-, L) iff L C O~, and replies
True to (check+, L) iff L C O*. Thus, we have that the user process can only change from
label L to L' if it can subtract all tags i, — L’ and add all tags i’ — L, either by its own
capabilities or those globally owned (see Definition 2 int®ec3.3).

The user half of a process can call into the kernel state w iteaown .S or I label, or to
determine which capabilities it owns. These calls are hahdimply by the following subpro-
cesses:

READMYLABEL ;0 = (s A (get_label, Secrecy) — s Y S — Kg 10 |
s A\ (get_label, Integrity) — s Y I — Kg1,0)

And similarly for reading capabilities:

READMYCAPS; o = (s A (getcaps) — s YO — Kgr.0)

If a process can accumulate privileges with callSlEEWTAG it can later discard them with
calls toDROPCAPS

DROPCAP§[7O = (8}\ (drop_caps,X) — KS,I,O—X)

On a successful drop of capabilities, the process transitio a new kernel state, reflecting the
reduced ownership set.

The next process to cover is forking. Recall that each at#igki on the system has two
components: a user compondnitand a kernel component K. The Flume model does not
capture what happens t§ when it callsfork, but an implementation of the model should provide
a mechanism fot/; to copy its address space, and configure the execution env&at in the
child. The model does capture the kernel-specific behamifark as follows:

55

FORKg 7,0 = (s A (fork) —
pY (fork,0) — p?j —
sYJ —
Ks,1,0)
Recall thati.p is a channel from théth kernel process to the process manager in the kernel,
PROCMGR

The process handlingetpid is straightforward:

GETPIDs, 1,0 = (s A (getpid) —
p!l(getpid) — p?i —
sYi —

Ks,r,0)

And user processes issueexit system call as they terminate:

EX|TS7[7O = (8}\ (exit) —

q!(clear) —
pl(exit) —
SKIP)

Once a process with a given ID has run and exited, its ID isagtinever to be used again. An
alternative implementation is for the last transitiorEXIT to transition back to a starting state,
but such a transition complicates the proof of non-interfiee in Chapter 5.

4.6 Communication

The communication subprocesses are the crux of the Flumen@#lel. The require care to

ensure that subtle state transitions in high processestdesdt in observable behavior by low
processes. At the same time, they must make a concerted @édliver messages, so that the
system is useful.

The beginning of a message delivery sequence is the pr8&ddg invoked wherU; wishes
to send a message ;. To makeSENDsucceed as often as possible, the kernel attempts to
shrink the process’s label and to grow its integrity labdlas much as allowed by the process’s
privileges. The actual message send itself goes throughbviiiechboard procesSWITCHvia
channeli.c. The switchboard then sends the message onto the destiriatio

56

SENDy ;0 = (s A (send, j, X,m) —
if X CO
then g!(dual_privs,O) — ¢?D —
(S—D,IUD,j, X,m) —
sYOk — Kgro
else s Y Error — Kg,0)

The procesSWITCHlistens on the other side of the receive charninellt inputs messages
of the formi.c?(S, I, 7, X, m) and forwards them to the processK asj.c!(S, I, 5, X,m):

SWITCH = |y;(i.c?(S, 1,5, X,m) —
(j.c!(S, 1,4, X,m) — SKIP || SWITCH)
The SWITCHprocess sends messages in parallel with the next receivatmoe This paral-
lelism avoids deadlocking the system if the receiving pssdeas exited, not yet started, or is

waiting to send a message. In other words, $NéITCHprocess is always willing to receive a
new message, delegating potentially-blocking send ojpesato an asynchronous child process.

Once the message leaves the switch, the receiver procedle$érwith itsINTRECVsub-
process. After performing the label checks given by Debnit in Section 3.3.1, this process
enqueues the incoming message for later retrieval:

INTRECV 1.0 = ¢?(Sin, fin, 7, X,m) —
g!(dual_privs,O) — ¢g?D —
if (Sn CSUD) A (I —D CIp)
then ¢!(enqueue, (X, m)) — Kgs 10
elseKs 7,0

The final link in the chain is the actual message delivery ier space. For a user-space
process to receive a message, it calls into the kernel,@@kindequeue and deliver any waiting
messages. Receiving also updates the process’s owndshgfiect new capabilities it gained.

RECVs1.0 = (s A (recv,j) —
¢!(dequeue, j) — q?(X,m) —
sYm —

Ks,1,0ux)

The last subprocess of the group is one that allows a userasrotp wait for the first avail-

57

able receive channel to become readable:

SELECTE,1,0 = (s A (select, t, A) —
(uX o (g!(select, A) — ¢?B —
if B=1{}
then INTRECV% ; o; X
elsesY B — Kg10)
At (sY{} — Ksi0))
The “timed interrupt operator’\; [92] interrupts the selection process afteticks of the clock

and outputs an empty result set. AISSELECTcalls subprocestNTRECV* which behaves
mostly likeINTRECV except it keeps receiving until an admissible messageeatri

INTRECV*% ;0 = ¢?(Sin, Iin, j, X,m) —
g!(dual_privs, O) — ¢g?D —
if (Sn CSUD) A (I —DCIp)
then ¢!(enqueue, (X, m)) — SKIP
elseINTRECV% 1.0

4.7 Helper Processes

It now remains to fill in the details for the helper procesdeat the various ; o processes
call upon. They areTAGMGR which manages all global tag allocation and global capieds)
QUEUES which manages receive message queues, one per procedmallygdPROGMGR
which manages process creation, deletion, etc.

4.7.1 The Tag Managerf TAGMGR)

The tag manager maintains a global universe of fagkeeping track of the global set of privi-
leges available to all processes It also tabulates which tags have already been allocateals s
never to reissue the same tag. Thelsetfers to those tags that were allocated in the past. Thus,
its states are parameterizZEAGMGR, ;. As the system starts) andT are empty:

TAGMGR= TAGMGR,;

58

Once active, the tag manager engages in the following calls:

TAGMGR, ; = NEWTAG; ; |
NEWTAG;, ; |
NEWTAGO, ; |
DUALPRIVS, ; |
CHECK+ 7 |
CHECK+ ;

Many of these subprocesses will call upon a subroutine #ratamly chooses an element
from a given set. We define that subroutine here. Given & set

CHOOSE: = 2(5.1) — 1 (ly) — STOP

That is, the subproce€3HOOSEnondeterministically picks an elemeptrom Y and returns it
to the caller. As we will see in Chapter HOOSEs refinement (i.e., its instantiation) has an
important impact on security. It can, and in some cases dhtalke into account the labels on
the kernel process on whose behalf it operates.

The first set of calls involve allocating new tags, such as:

NEWTAG+; ; = choose CHOOSE-_; / |, (i-g A (create_tag,Add) —
choos&(S,)7t —
gt {t"}) —
TAGMG%U{H},TU{t})
That is, the subproceSSEWTAG+looks at all channels to all other processés € P) and
picks the first such that has input available. Here, it chooses attadjrandom viasCHOOSE
then returns that tag to the calling kernel process. It tleevices the next request in a different

state, reflecting that fact that a new capability is avadiablall processeg). Upon allocating
a tagt, the tag manager updates its internal accounting so thdt riat reallocate the same tag.

We next defindNEWTAG-andNEWTAGGsimilarly:

NEWTAG;, ;. = choose CHOOSE: ;. / |v2' (i.g A (create_tag, Remove) —
choos&(S,)7t —
gt A{tT}) —
TAGMG%U{t*},TU{t})

59

And:

NEWTAGQ, ; = choose CHOOSE ;. / |, (i-g A (create_tag,None) —
choos&(S,)7t —

gl {t7,t7}) —
TAGMGR, 7,,(;;)

The purpose of th®UALPRIVSsubprocess is to augment a user process’s ownership set
O with all of the globally-held privileges available . That is, to returrO; = O; U O for a
given process. The challenge, however, is to do so without allowing a psede enumerate the
contents of0. To achieve both ends, we specialize the interfacBA6MGR Given a se0;,
the tag manager process will return the set of tagsithatas dual privilege for. Since there are
no tagst such that{t—, ¢} C O, it follows that the process must own at least one privilege f
to get dual privilege for it. Thus, theUALPRIVScall will not alert any process to the existence
of any tags it did not already know of:

DUALPRIVS, ; = |,,. (i.g?(dual_privs, O;) —

i.g(0F LOT) N (O] UOT)) —
TAGMGR, ;)

Finally, the behavior o€EHECK+ has already been hinted at. Recall this subprocess checks
to see if the supplied set of tags is globally addable:

CHECK+ 4 = |, (i-g?(check+, L) —
(if Lc Ot
theni.g!True

elsei.g!False) —
TAGMGR,)

And similarly:

CHECKy, 7 = |y, (i-g7(check-, L) —
(if LC O™
then i.g!True
elsei.g!False) —

TAGMGR,)

60

4.7.2 The Process ManagerRROCMGR)

The main job of the process manager is to allocate processfides when kernel processes call
fork. We assume a large space of process identififersThe process manager keeps track of
subsetP? C P to account for which of those processes identifiers are @yr@ause. In then
allocates fronP — P.

PROCMGR, = PM-FORK; |
PM-GETPID; |
PM-EXIT,

To answer thdork operation, the process manager picks an unused procegs filw the child,
gives birth to the childj : K') with the messagg.b!(S, I, O), and returns child’s process ID to
the caller (parent):

PM-FORK; = choose CHOOSE, /|, (i.p?(S, I,fork, 0) —
choos&(S,1)?j —
4.b1(S,1,0) —
i.pl(j) —
PROGMGR, ;)

Trivially:

PM-GETPID (z’.p?(getpid)!z‘ — PROCMGF}

= ‘Vi

Kernel processes notify the process manager of their exitscourse, such notification
would give it opportunity to update its accounting and tanetthe exiting process identifier into
circulation. But, for now, it handles process exits as ne:op

PM-EXIT = |,,.(i.p?(exit) — PROCMGR

A final task for the process manager is to initialize the systaunching the first kernel
process. This process runs with special procesisitDoff-limits to other processes. Thus:

PROCMGRO-= init.b!({}, 7, {},{}) — PROCMGR _ inis

4.7.3 Per-process QueueQUEUES)

Each kernel processK needs it own set of queues, to handle messages receivedemynasly
from other processes. For convenience, we package up dleafueues in a single process
QUEUES whichi:K can access in all of its various states. The chagiselves communication
between the queues and the kernel process. The buildink didiais process is a singUEUE
process, similar to that defined in Hoare’s book. This preteparameterized by the value stored

61

in the queue, and of course the queue starts out empty:
QUEUE= QUEUE_.

From here, we define state transitions:

QUEUE, = (?(enqueue,z) — QUEUE,, |
?(select, j){} — QUEUE,)
QUEUE< = (?(enqueue,y) — if #s+1 < Ng

~
S

then QUEUE< P

s (y)

else QUEUE _ |

(z)" s
?(dequeue)!lz — QUEUE, |
?(select, j)!{j} — QUEUE(~)

S

Note that these queues are bounded bendaftelements. Attempts to enqueue messages on
filled queues result in dropped messages. The model cominiargQUEUE subprocesses into
a collection processes call€@lJEUESET

QUEUESET=||;cp i: QUEUE

The process calleQUEUEScommunicates with kernel processes. Recall tlias the channel
shared betweeit K andi: QUEUES

QUEUES= s : QUEUESET/ sel : QSELECT / uXe

(¢?(enqueue, j,m) — s.jl(enqueue,m) — X |
g?(dequeue,j) — s.jl(dequeue)?’m — g¢lm — X |
g?(select,Y) — selY?Z — ¢!Z — X |
q?(clear) — QUEUES

62

Finally, the point ofQSELECTis to determine which of the supplied queues have pending mes
sages. This process uses tail recursion to add to the vatiasis readied queues are found.

QSELECT =7 : VAR ?Y —

Z =1}

(MX o (if Y ={}
then (IZ — QSELECT)
else pickj € Y';

V=Y —{j};
(s.jl(select,j) — s.j7A —
(Z:=ZUA; X))

4.8 High Level System Definition

The overall systen$YSis an interleaving of all the processes specified. Consioeressubset
J C P of all possible process IDs. The user-half of the systentrictsd to those processes in
J, is:

UPROCS = [|jesU;

The kernel processes are:

KS; =[ljes j: (K || QUEUES \ aQUEUES
{.a}

Adding in the helper process gives the complete kernel:

KERNELYL = (KS; || SWITCH \ aSWITCH
{j.cliet}
KERNEL2 = (KERNELY || TAGMGR \ aTAGMGR
{j.gliet}
KERNEL; = (KERNELZ || PROCMGRD)\ aPROCMGRO
{j.pliet}
Finally:
SYS =UPROCS | KERNEL
{j.slie]}

Of course, the whole system is captured simplyS& .

This assembly of kernel process makes extensive use of tRen@g operator ({”). That
is, the combined proces3YSdoes not show direct evidence of internal state transitguch
as: communications between ainyK and the switch; communications with the tag manager;
communications with the process manager; etc. In fact the erents that remain visible are
the workings of the user procesdésand their system calls given by A andi.sY. By impli-
cation, kernels that implement the Flume model should Hidesystem’s inner workings from

63

unprivileged users, but this is largely the case alreadprditical terms, the CSP model 8l S
shows what a non-root Unix user might see if examining hisgsees with thet r ace utility.

4.9 Discussion

We have presented a particular CSP model that capturesutheeIFC rules discussed at a high
level in Chapter 3. Of course, this is not the only CSP modat mhight describe an interesting
DIFC kernel. We briefly discuss the advantages and limitatiof this approach.

Limitations The Flume DIFC model is a “monolithic” kernel design, in wiithe kernel
is a large, hidden black box, and user-level processes hkargeasystem call interface. Some
modern approaches to kernel design (e.g. the Exokerne@f#Bihe Infokernel [2]) expose more
of the inner workings of the kernel to give application deysrs more flexibility. However,
in an information flow control setting, such an exposure igeptally dangerous. Imagine,
in the Flume CSP model, that interactions between the psoceds and the tag managers
TAGMGRwere not concealed withoTAGMGR Some process with secrecyS; = {t} and
empty ownership issues the system cattate_tag. Assume that : K makes a call to the
tag manager ovet.g, and then the tag manager makes some progress on allocagingew
tag, halting right beforeé.g!(¢, {t*}). Then, another procegswith empty secrecy and empty
ownership also tries to allocate a new tag. Npwan observe thatlEWTAGcannot proceed
pastg!(create_tag, w), because the tag manager is not currently in a state in whiglcéives
g?(create_tag, w). Thus,i can convey bits tg via the tag manager’s internal state machine.
The simplest way to work around this problem is to concealitiner workings of the kernel
(as we have done). Another, more complicated solution, isddel more parallelism inside the
kernel, so that the tag manager can serve batidj concurrently, without them contending for
resources (and therefore communicating bits).

Along similar lines, an important limitation is that the alomodel captures most of the
kernel processes—like the: K, the tag manager, the queues, and the process manager—
as single-threaded processes. For instance, if the taggeamaresponding to a request for
i.g.(create_tag, w), it cannot servicg.g.(create_tag, w) until it replies toi.g.(create_tag, w).

In practical implementations of this CSP model, such segtbn might be a bottleneck for
performance. As mentioned above, more parallelism intéorthe kernel is possible, but would
require explicit synchronization through locks, and marmplexity overall.

The Flume CSP model obviously does not describe a full keareimplementation would
have to fill in many pieces, including primitives for reliabinterprocess communication and
files (discussed in Chapter 6). In CSP terms, moving from &-légel model to an actual
implementation is known as “refinement:” the behavior of high-level model remains, while
details unspecified in the model (such as nondeterminisine@HOOSEoperator) are better-
specified. Of course, a real kernel also needs to interfate thé CPU, memory, network,
devices, storage, etc., and the model specifies none of thiesactions. Unfortunately, the
“refinement paradox” holds that even if a process exhibitsinterference, a refinement of that

64

process might not [48]. Thus, even if a kernel faithfully leypents the Flume CSP model, it
might still be susceptible to information-leaking attacks

Advantages Though the Flume CSP model does not automatically yield lefie® imple-
mentation, the model still serves an important purpose —dogthat some implementation of
the API might exist that does not leak information. The saareot be said of a model for the
Asbestos or the IX API: all systems that implement those nsodeuld be susceptible to large
information flow control leaks (as seen in Section 3.4). Te agpoker analogy, implementers
of Asbestos or IX are “drawing dead” — even if they make theindh (achieve a good imple-
mentation), they will still lose to their opponent (the aktar) who had a better hand all along.
Implementers of Flume at least have a fighting chance.

Relative to semantic models from the language communit]jthe Flume model provides
much more flexibility as to how the variodg might behave. The Flume model restricts these
processes from accessing certain communication chanutedtherwise they can behave in any
manner, and need not be type-checked. The innovation Hat&ego language-level models is
to emulate the user/kernel split already at work in most aijggy systems.

Finally, the Flume model, relative to the kernel featuresaés model (e.g., IPC, forking,
label creation, etc), is almost completely specified. Themnocess that uses nondeterminism is
CHOOSE and Chapter 5 provides more details about how this pro¢tesgdsbehave.

Chapter 5

Non-Interference

A mature definition in the literature for models like Flumesshon-interferencelnformally:

One group of users, using a certain set of commanamngterferingwith another
group of users if what the first group does with those commdwadsno effect on
what the second group of users can see. [36]

That is, for an export-protection tag and a procesg running with S, = {t}, a process;
running with.S, = {} should have an execution path that is entirely independepiso If p
could somehow influencg then it could reveal tq information tagged witht, which is against
the high-level export-protection policy.

This chapter explores the non-interference propertiesurh&’s CSP model. Previous work
by Ryan and Schneider [88] informs which definition of notenference to apply (see Sec-
tion 5.2). A proof that Flume fits the definition follows (seec8on 5.4).

5.1 CSP Preliminaries

Before we can state our working definition of non-interfeenwe must define some more CSP
preliminaries. First, a way to identify processes in staithger than their initial states: the
processP/tr is P advanced to the state after the tréickas occurred. Next, we often talk about
the effects of “purging” certain events from traces and psscstates. The operatgr’ denotes
projection The tracer | A is the tracdr projected onto the set, meaning all events not id
are removed. For instance, & = {a}, andtr = (a,b,c,d,a,b,c), thentr | A = (b,¢,d,b,c).
For a set”, the setC' | A is simply the intersection of the two.

A final topic, of great interest in the CSP literature, is @®x equivalence. In this thesis,
we use the “stable failures” model, from Hoare’s book [46d &ter rephrased in Schneider’s
book [92] and Roscoe’s book [85]. For a proceBsthe failures ofP, written SF[P], are
defined as:

SF[P] ={(s,X) | setrace§P) N P/s | N X crefusal§P/s)}

65

66

The traces ofP (denotedtraceg P)) is the set of all traces accepted by the procBssThe
notation@ | is a predicate that denotes the proc@sis “stable.” Unstable states are those that
transition internally, or those that diverge. For examptmsider the process:

Py = (a — STOPM b — STOP

Py begins at an unstable state, since it can make progressher ¢lite left or right direction
without accepting any input. However, once it makes its fitstrnal transition, arriving at either
a — STOPorb — STOR it becomes stable. A process that diverges, such as P)\{c}, has
no stable states. Conversely, stable states are thoseathatake no internal progress.

The refusals of? (denotedrefusalg P)) is a set of sets. A seX is in refusalg P) if and
only if P deadlocks when offered any event frakh For instance, consider the proceSs
above. We write thatefusal§ Py) = {{a},{b}}. Thatis, P, can nondeterministically choose
the left branch, in which case it will only accefii} and will refuse{b}. On the other hand, if
it nondeterministically chooses the left branch, it wilcept{b} and refuse{a}. Thus, due to
nondeterminism, we writeefusalg P) as above, andot as the flattened uniofu, b}. Applying
a similar argument to all states &%, we can write:

SFIPT = {(0:{a}), (0, {b}), (@), {a, b}), ((b), {a, b})}

In other words, the failures dP captures which traceB accepts, and which sets it refuses after
accepting those traces.

In the stable failures model, two procesdesand () are deemed equivalent if and only if
SF[P] = SF[Q]. Two projected processeB | A and@ [A are equivalent if and only if
SF[P] | A=SF[Q] | A, where:

SFIP] 1 A={(tr | A, X NA) | (r,X) e SF[P]}

and similarly forQ.

5.2 Definition

With these notational preliminaries in mind, a phrasing afitmterference [88] is as follows:

Definition 4 (Non-Interference for Systerfi). For a CSP procesS, and an alphabet of low
symbolsLO C «.S, the predicatdNI o (.5) is true iff:

vtr,tr’ . tracegS). tr ~ o tr' =
((S/tr) | LO = (S/tr') | LO)

Where:
treatl’ & triA=tr'| A

We say that the process exhibits non-interferencewith respect to the low alphab&iO iff

67

Nio(S) is true.

In the stable failures model, the process equivalencearlat
(S/tr) | LO = (S/tr') | LO

can be rewritten:
SF[(S/t)] | LO = SF[(S/tr")] | LO

This definition considers all possible pairs of traces $othat vary only by elements in
the high alphabet (i.e., they are equal when projected t9.Idwor each pair of traces, two
experiments are considered: runnifigover the elements in left trace, and runnifigover the
elements in the right trace. The two resulting processed foak equivalent from a “low”
perspective. That is, they must accept all of the same ti@eegected to low) and refuse all of
the same refusal sets (projected to low).

5.2.1 Stability and Divergence

There are several complications. The first is the issue oftven®r not the stable failures model
is adequate. For instance, if a high process caused thel kerdiéverge (i.e.,hang, a low
process could record such an occurrence on reboot, thezaking a bit (very slowly!) to low.
By construction, the Flume kernel never diverges. One caalckhis property by examining
each system call and verifying that only a finite number ofiinél events can occur before the
process is ready to receive the next call. User-space [gdess.,U;) can diverge, but their
behavior matters little during a security analysis.

If divergence attacks were a practical concern, we couldigely capture divergent behavior
with the more general Failures, Divergences, Infinite Tsg@l) model [92]. We conjecture
that Flume’s non-interference results under the stablierés model also hold in the FDI model,
but the proof mechanics are yet more complicated.

5.2.2 Time

The next complication involves time. The model for Flumegoet fit in Hoare’s original un-
timed CSP model, since tlselect system call requires an explicit timeout (via the operator).
Though Schneider develops a full notion of process equiealén timed CSP [92], the mechan-
ics are complex. Instead, we use a technique introduced lakrine [74] and also suggested
by Schneider [92]: convert our timed model into an untimedietovith the introduction of the
eventtock which represents a discrete unit of time’s passage. licpéat, Schneider provides
the ¥ function for mapping processes from timed CSP to discretéeteCSP withtock For
example:

Y(e—Q)= Ph=a—¥Q)
Otock — Py
U(WAITn +1) = tock — ¥ (WAITn)

68

‘

Figure 5-1: Intransitive Non-interference. Arrows demtitbwed influence. All influences are
allowedexcepthigh to low.

Without doing so explicitly, we assume that tlidranslation is applied to all states of the Flume
model, and that theock event is not hidden by any concealment operator.

5.2.3 Declassification

The third complication isleclassificationor to use the terminology of the process-algebra litera-
ture, intransitive non-interferencerhat is, the system should allow certain flows of informiatio
from “high” processes to “low” processes, if that flow treses the appropriate declassifier. Fig-
ure 5-1 provides a pictorial representation: the systeawallow processes and the declassifier
to influence all other processes, and the high processeBuerine other high processes and de-
classifiers buhotto influence low processes. However, in the transitive cmsail processes can
influence all other processes, negating any desired sgqudperties. Previous work assumes
the existence of some global security policy, and modifiéstieyy non-interference definitions
to rule out flows not in the given policy [86].

In this thesis, we simplify the problem. Consider an expostgction tag, for whichtt € O
andt~ ¢ O. We consider high symbol§ I, as those that emanate from a progessith ¢ € S;.
All other symbols are considerdd),. Moreover, we consider only those processes that cannot
declassifyt. Let N; be the list of the process IDs of these processes:

Ni={j[t¢&0;}

Our proofs then cover non-interference results3¥1S;,, all processes on the system that cannot
declassify secret data tagged with tag

69

5.2.4 Model Refinement and Allocation of Global Identifiers

The model presented in Chapter 4 is almost fully-specifieith an important exception: the
processCHOOSE

CHOOSE = ?(S,1) — 1 _,('y) — STOP

The “nondeterministic internal choice” operator) (implies that the model requires furthes-
finement.The question becomes: how to allocate tags and procesdfiieiesm

Consider an idea that does not wolRHOOSEpicking fromY sequentially, yielding the
tag (or process ID) sequencg 2,3, ...). This allocation pattern allows high-throughput leaks
of information from high to low. That is, the low process ferketrieving a child ID. Then the
high process forké times, to communicate the valdeto low. The next time low forks, it gets
process IDi+ &, and subtracting recovers high's message. There are two problems: (1) low and
high processes share the same process ID space; and (2ptheyanipulate it in a predictable
way.

In the naive allocation scheme, the second weakness isigge even without the first.
Consider the attack in which a high process communicates ay'hllocating a new tag via
create_tag(Add), and communicates a “0” by refraining from allocating. Ibalprocess could
guess which tag was allocated (calt)it it could then attempt to change its labeldo= {¢}. If
the change succeeds, then the low process had accessmeaning the high process allocated
the tag. If the change fails, it follows the high processaiefed from allocation. The key issue
here is that the low process “guessed” thettagthout the high process needing to communicate
it. If such guesses were impossible (or very unlikely), ttiack would fail.

Another idea—common to all DIFC kernels (c.f., Asbestod,[BiiStar [113] and the Flume
implementation)—is random allocation from a large pool.eThndom allocation scheme ad-
dresses the second weakness—predictability—but not tte dind therefore fails to meet the
formal definition for security. That is, operations like pess forking and tag creation always
have globally observable side affects: a previously ucatied resource becomes claimed.

Consider, as an example, this trace for the Flume system:

{th, {1 4D,
{t}, {},fork),

{th, {1 4D,
{th, {59,

A new process is born, with secrecy labed; = {t}, and empty integrity and ownership. Thus,
i’'s actions fall into theHI; alphabet. Oncé starts, it forks a new process, which the kernel
randomly picks ag. The childj runs with secrecys; = {t}, inheriting its parent’s secrecy
label.

Projecting this trace onto the low alphabet yields the emsptyuencetf | LO; = ()). Thus,
this trace should have no impact on the system from a low pedcgperspective. Unfortunately,

tr = (i.b.
7.5.
j.b.

1.8.

~—~ o~ —~

70

this is not the case. Befoteoccurred/ could have forked off procegs meaning:

tr' = (k.o.({h 3 (L D),
k.s.({},{},fork),
Jb.(H D,
ks.({}3:{} 7))

was also a valid trace for the system. But atteoccurs,tr’ is no longer possible, since the
processj can only be born once. In other words,” tr’ is not a valid trace for the system but
tr’ is by itself. This contradicts the definition of non-intadace in the stable failures model of
process equivalence.

Though random tag allocation does not meet the formal diefimfor non-interference, it
still “feels” secure. Yes, high processes can theoretidatierfere with low processes, but low
processes will never observe that interference under caatse computation assumptions. That
is, to observe that procesdorked procesg, processt would have to call fork an impractical
number of times. One possible approach from here is to expeeitiwith new, relaxed definitions
on non-interference, though modeling cryptographic ramuess has proven troublesome in the
past [88].

To summarize, we have argued that due to the shared glotathitigppool O and the shared
process ID pooP, the allocation of these parameters must obey two progetld partitioning;
and (2) unpredictability. Our approach is to design a neacalion scheme that achieves both
properties. We saw that certain schemes like random aildwcathieve unpredictability. As for
partitioning, we change the allocation scheme so that pessewith different labels pick tags
and processes IDs from different pools, meaning they caerumal circumstance interfere with
each other’s choices. That is, the space of tags (and prt2epss partitioned, and eadfb, I)
pair picks tags (and process IDs) from its own partition.

To construct such an allocation scheme, we first define traesnpeters:

«a = the number of bits in a tag

g

€

[

log, (maximum number of operations

(1>

— log, (acceptable failure probability

As reasonable value fgrmight be 80, meaning that no instance of the Flume systenattainpt
more that2®" operations. Of course, allocating a tag or forking a new @seds an operation,
thus the assumption is that the system will allocate fewan 2 tags or process IDs. Similarly,
it will express no more tha@® different labels. A reasonable value fomight be 100, meaning
the system might fail catastrophically at any moment witbbaibility no bigger tha =%,

New we define a label serialization functiot{;). Given any labellL. C 7, s(L) outputs a
integer in[0, 2%) that uniquely identified.. The serialization can be predictable.

Next consider the family of alhjectivefunctions:

G : ({0,1}7,{0,1}%,{0,1}") — {0,1}~

71

The Flume system, upon startup, picks an elemert G at random. When called upon to
allocate a new tag or process ID, it retur(s(.S), s(1),), for some heretofore unused €
{0,1}5. The output is a tag if0, 1}.

We can solve for how bigv must be in terms off ande. Recall the first key property
is partitioning, meaning functions i must be injective—their domains must fit inside their
ranges: 2°% < 2%, or equivalently,a > 33. The second key property isnpredictability
meaning that the outcome gfis not predictable. Sinceg is chosen randomly frondr, it will
output elements if0, 1}* in random order. AfteR” calls, g outputs elements from a set sized
2 — 26 at random. Sincer > 34, this “restricted” range fog still has well in excess of
20—1 elements. Failure occurs when a process can predict thetaftp, which happens with
probability no greater thad®~!. Thus,a — 1 > . Combining these two restrictions, >
max (e + 1,30). Our settings? = 80 ande = 100 give o = 240.

Thus, we assume thdt = P = {0, 1}, for a sufficiently largex. The kernel pickg € G
at random upon startup. Th€&HOOSHSs refined as:

CHOOSE =?(S,1) — 1 _, — STOP

Where:
G(S,1,Y)={g(S,I,z) | €T A g(S,I,z) €Y}

Note thatG(S,I1,Y) C Y, so the nature of the refinement is just to restrict the seDefthat
CHOOSE- will ever output, based on the secrecy and integrity labktkecalling process.

5.3 Alphabets

We aim to show thaBY S, fits the definition of non-interference given in Section S[Re first
order of business is to define the alphali¢tsandLO;, starting withHI;:

HI, £{i.b.(S,I,...) |ie Ny ANSCTstteS}U
{i.s.(S,I,...) |ie Ny ANSCTstteS}

Now LO; is simply the complement dfll;:

{i.s(S,1,...) |ieN,ANSCTstt¢S}U
{tock}

These sets are trivially disjoint, and therefore they partithe possible alphabet f@YS,,
which we call A for short:
A 2 aSYS, = HI, ULG,

The low set,LO; includes the eventibck that marks the passing of time. In the discrete time
model, thes¢ock events can be arbitrarily interwoven in any trace.

72

The rest of the events in the Flume model (like communicatimough the switch, to the
process or tag manager, etc.) are all hidden by the CSPghagherators, as given in Section 4.8.
Thus, the exposed view &Y S, consists only of process births (i.eh) and system call traces
(i.e.,i.s). For convenience, define the set of events that correspdetihel processs incoming
system calls, and a set of event that correspond to presagsponses:

C; £{i.s.(S,I,create_tag,w) | S, C 7 A w € {Add,Remove, None}} U
{i.s.(S, I,change_label,w,L) | S,I,L CT Nw € {Integrity,Secrecy}} U
{i.s.(S,I,getlabel,w) | w € {Integrity, Secrecy}} U---

And so on for all system calls. Similarly for return valuesrfr system calls:

R, £{is.(S,I,t) | S,ICT ANteT}U
{i.s.(S,I,r) | S, T A re{OkEror}}U
{i.s.(S,I,L) | S,I,LCT}U
{i.s.(5,1,0) | S,ICcT AOCO}U
{i.s.(S,I,p) | S,ICT ApeP}

The only visible events for process K are system calls, system call replies anck
Oé(’i : K) =C; UR; U {tOCk}

A final notational convenience: we often describe the fasunf a proces# projected onto
the low alphabeLO; and abbreviate it:

Li[P] & SF[P] | LO;

5.4 Theorem and Proof
The main theorem is as follows:

Theoreml (Non-Interference in Flume)-or any export-protection tagfor any Flume instance
SY$;,, and for any security parametey there exists an instantiation @HOOSEsuch that
Pr[Nlo,(SYS,)] > 1 —e.

We make several observations. First, note tBatS;, is not a single CSP process but
rather a family of processes, which vary from one anotheedbas their user-space portions
(UPROCS;,). The theorem must hold for all members of this family. Setdhe theorem it-
self is probabilistic. As mentioned above, for any instanE&YS,,, there is a small chance
that the output oCHOOSEis guessable, and in that case, the system may not exhiliiotie
interference property. The best we can do is argue that thgepy fails with arbitrarily small
probability.

73

Proof Consider any two traceas andtr’ such thatr ~ o, tr’. The proof technique is induction
over the length of the tracésandtr’. We invent a new function(-)

Atr) £ #£(tr [LOy)

that outputs the number of low events in a trace. Becausetr’, it follows thatA(tr) = A(tr’).
We first show the theorem holds for all tradesindtr’ such that\(tr) = A(tr’) = 0. We then
assume it holds for all traces witk{tr) = A(¢r') = k£ — 1 and prove it holds for all traces with
A(tr) = \(tr') = k.

Base Case For the base case, considertaltr’ € traceSY$,) such that\(tr) = A(tr’) = 0.
In other wordstr, tr’ € HI}.

At the system startuS(Y Sy, after no transitions), all of the kernel processkK are waiting
on a message of the forirb before they spring to life. Until such a message arrivesis’ will
refuse all event€’; and R;. The one exception is the procds#t, which is already waiting to
accept incoming system calls when the system starts. Bytrewtion Siniy = {} and iy = 7.
Sincet ¢ Sinit, Cinit U Rinit € LO;. Therefore, the system refuses all high events at startup,
andtr = () is the only trace oSY$;, without low symbols (and for whict\(tr) = 0). For
tr = tr’ = (), the lemma trivially holds.

Inductive Step For the inductive step, assume the lemma holds for all traces of SYS,,
such thatr =~ o, tr’ and also\(tr) = A(tr') = k& — 1. Now, we seek to show the lemma holds
for all equivalent traces with one more low symbol.

Given an arbitrary trace < tracegSYSy,) such that\(tr) = k, write tr in the formtr =
p L7 h, wherep is prefix oftr, [€ LO, is a single low event, anfl € HI; are traces of
high events. Similarly fotr’ € tracegSYSy,) wheretr =~ o, tr’: writetr’ = p’' 17" K. It
suffices to show thaf[S/tr] = L:[S/(p ~ 1)]. If we have shown this equality for arbitratwy,
then the same applies fél/tr’, meaningl,[S/tr'] = L£.[S/(p’ ~ 1)]. By inductive hypothesis,
L:[S/p] = L:[S/P'], and thereforel,[S/(p)] = L[S/(p’ " 1)]. By transitivity, we have
that £,[[S/tr] = L.[S/tr'], which is what needs to be proven. Thus, the crux of the argtime
to show that the high events ofdo not affect low’s view of the system; the second tratés
immaterial.

We consider the evemtcase-by-case over the different eventSyS,:

e [€ R; for somei

That is,[is a return from a system call into user space. Becaisea low event] is of
the formi.s.(S,I,...) wheret ¢ S. After this event;j : K is in a state ready to receive a
new system calli(: Ks 7, 0). Because all events iinare high events, none are system calls
of the formi.s.(S, I,...) with ¢ ¢ S, and therefore, none can forte K into a different
state. In other words, the everitan happen either before or afteiSYS;, will accept

74

(and refuse) the same events after either ordering. That is:

We can apply the inductive hypothesis to deduce that:

Et[[SYSft/(p - h)ﬂ =L [[SYSft /pﬂ

Appending the same evehto the tail of each trace gives:

Li[SYS/(p ™ h ™ D] = L[SYS./(p ™ 1)]

and by transitivity:

Lo[SYS,/(p ™ 17 h)] = Li[SYS, /(p)]
which proves the claim for this case.

l =i.s.(S,I,create_tag, w) for some: € P, and somev € {Add, Remove, None}

After accepting this event, the process K can no longer accept system calls; it can
only accept a response in the forim.(S, I,¢') for some tag’, or tock Sincel € LOy,

it follows thatt ¢ S for both the system call and its eventual reply. The high &vén

h could affect the return value to this system call (and treeeeS F[S/tr]) if the space

of ¢'s returned somehow depends bnbecauser changed the state of the shared tag
manager. An inspection of the tag manager shows that i&s stdy changes as a result of
acall toe = j.g.(5', I, create_tag, w) for some procesg, and labelsS’” andI’. Such a
call would result in a tag such as= ¢(S’, I, z) being allocated, for some arbitrazy
Because: € h is a high eventt € S’. Becausd is a low eventt ¢ S. Thus,S’ # S,
and assuming is injective, it follows that’ + ¢, for all =. Therefore, events ih cannot
influence which tag¢’ might be allocated as a result of a calldeate_tag. We apply
the same argument as above, thaind/ can happen either before or after one another
without changing the failures of the system. Hence, thertladlds in this case.

I = i.s.(S,I,change_label, w, L) for some: € P, w € {Add, Remove, None} and
LCT.

After accepting), the process : K is expecting an event of the forirs.(S, I,r) for r €
{Ok, Error}, to indicate whether the label change succeeded or faitedill ltransition
to another internal state (and will behave differently ia fhture) on success. The only
way an event irh can influence this outcome is to alter the compositio@pfvhich the
tag manager checks ais behalf by answering.g.(check+) andi.g.(check-) within the
CHECK subprocess.

Consider the case in whidhcontains an eventsuch that = j.s.(S’, I, create_tag, w),
andj is the high process that issuedthat is,t € S’). After e, the kernel might have

75

performed the internal events necessary to serving thtemsysall, meaning a new tag
was allocated, and the tag manager switched to a new staetiedlit’ * € O ort'~ € O.

If t € L, thenh’s occurrence allowsto succeed, antl's absence causéso fail. ¢’ € L

if and only if £,[SYSy,/(p ")] # Li[SYS,(p ~ 1" h)]. However, we claim that’

is a member of. only if U; “predicted” the output of;, which it can do with negligible
probability 27¢). With extremely high probability. could only contairt’ if the event

e happened before the evelt But our inductive hypothesis has already ruled out this
possibility.

o [=i.5.(5,1,get label,w) for somew.

This call only outputs information about what state a keprekess is in; this state only
updates as a result of low everits. (S, I, change_label). All eventse € h do not fit this
template since they are high events. Therefbrépes not impact the result of system call
l.

o [=i.5.(5,1,get_caps).

There are three state transitions that can alter the repthdget_caps system call:
i.s.(S, I,create_tag, w), i.s.(S, I,drop_caps, L) or i.s.(S,I,recv,j). None of these
calls are equal to an event in since they are low events ahadcontains only high events.

e [=i.s.(S,I,drop_caps, X) for someX.

By definition of theDROPCAPSsub-process, a transition to a néw ; o can follow a
reply tol. If e € h can influenc&)’, then it can change: K's failures. Howeverg cannot
influenceO’ sinceO’ is set toO — X on a successful operation. If the everis to allocate
a new tag’, we can apply the same argument as above to se¢'that O andt'~ ¢ O,
and therefore cannot affect)’.

o | =1i.5.(5,1,fork)

The only event : K will accept afterl (other thantock) is i.s.(S, I, k) wherek is the
process ID of the newly-forked child. By definition GHOOSEabove, there exists some
x such thatt = ¢(S,I,z). If an evente € h causes a process ID to be chosen, it would
be of the formp = ¢(S5’, I, y), for somey, and some’ such that € S’. Thatl is a low
symbol implies that ¢ S andS # S'. If g is injective thenk # p. Therefore, event

will never change the valuk that this kernel process might output next as its reply to the
system call.

The other result of théork system call is that now, a new procédsss running. That is,
k : K has moved out of the “birth state” and is now willing to accimioming system
calls in stat€k : Kg 1,0). The same arguments as above apply here. Bedawss forked

by a low process, it too is a low process, expecting only lomisgls before it transitions
to a new state. Therefore, the event&ioannot affect its state machine.

e [=1i.s.(5,1,getpid)

76

After accepting, the process : K will only accepttockor i.s.(S, I, 1) in this state, sé
obviously has no effect.

o [=i.s.(5,1,exit)
Regardless ok, a kernel process will only accefaick after exiting.

e [=i.5.(5,1,send, j, X, m) for somej, X, m.

The outcome of the send operation depends only on whether O or not. It therefore
does not depend dn

e | =i.s.(S,I,recv,)

The event aftef that: : K accepts is.s.(S, I, m) for some message:. It might also
change to a different state if the processent capabilities. The relevant possibility for
e € h to consider ise = j.s5.(S",I’,send, i, {t'"},()), for some high procesg with

t € S’. The claim is that this message will never be enqueuedaad therefore will not
affecti’s next visible event. Say that procegfas ownershi)’ and dual privileged)’.
Because we assumed that ¢ O U O’ U O, t cannot appear in eithdd or D’. Also,
because is a low process ¢ S. Thereforet € S” — D" andt ¢ S U D, which implies
thatS’ — D’ ¢ S U D, and the kernel will not enqueue or delivés message to. Again,

we have that. does not affect thé's possibilities for the next message it receives. The
same argument applies to the final system sallect.

We have covered all of the relevant cases, and the theordémw#by inductions

5.5 Practical Considerations

The construction o€EHOOSE based on a truly random functigne G, is not practical for real
implementations of Flume. The two requirements@spartitioning (i.e., injectivity) and true
unpredictability—must be relaxed in practice.

The first thought is to replace the random function fangilyvith a pseudo-random function
family [38]. In this case, all aspects of the constructiomai: the random selection gf
from its family, the serialization functios(-), and the input and outputs of the functign In
this construction, the hard bounds on true unpredictghdlie replaced with weakened bounds,
reflecting computational assumptions for current hard lprab.

Another implementation possibility is a “keyed-hash fumet such as HMAC [6] in concert
with a collision-resistant hash function like SHA-1 [28]8HA-256 [29]. By definition:

HMAC(x) = H(k @ opad, H(k & ipad, z))

wherek is a secret key of sufficient lengtbpad andipad are two fixed pads, anff is a hash
function like SHA-256. Thus, the kernel might pick a randoamd secret) key: on startup,
and then compute new tags and process IDs with HM&CI, =) for some counter variable.

This construction approximates both important propertidssumingH is collision-resistant,

s

HMAC, is also collision resistant, meaning an adversary cannotdiy’, I, I’, z, 2’ such that
HMAC (S, I,x) = HMAC(S’, I, z") and the inputs differ at least in once place (i£# S’

or I # I' orxz # 2). Thus, a high process with secref§} and a low process with secrecy
{} can only get the same tag (or process ID) if there is a cafligiothe hash function. Sim-
ilarly, under standard computation assumptions, an admersannot predict a valid output of
HMAC (S, I, z) without knowingk.

The advantage of the keyed-hash function over the pseunttmna function is twofold: first
the serialization functiors(-) can be discarded; and second, tags can be smaller. Above, we
suggested a reasonable length for tags might be 240 bitssin§ HMAC with SHA-1, tag
lengths are 160 bits. The cost of this reductiory'sfrange is thay is no longer injective; it is
merely collision-resistant (i.e., injective under cutreamputational assumptions).

The actual Flume implementation uses an even simpler agprdigpicksg at random from
a family of pseudorandom functions, and outputs the sequeig, ¢(2), g(3), ... for new tag
values or process IDs. Of course, wHe¥iS, is refined in this manner, many members of the
SYS;, family have the propertyr[Nl o, (SYSy,)] = 0; for instance, é&8Y$, in which a high
process allocates a tag, and then a low process allocates(ae Section 5.2.4). We leave
for future work either the substitution of the HMAC functionthe Flume implementation, or a
formal argument that accommodates our actual approachdvowe conjecture that in practice
this choice ofy does not negatively impact security.

5.6 Integrity

Though this chapter focuses on secrecy, the same argun@dt®hintegrity. Pick an integrity-
protection tag:. Then the low symbols are those whose integrity tags corteamd the high
symbols are those that do not. The same proof shows thatdgheskients do not interfere with
the low.

78

Chapter 6

Fitting DIFC to Unix

In Chapters 3 and 4, we developed a model for a DIFC kernelptzimwith the beginnings of a
system call API. However, further challenges remain befeeecan build a Unix-like APl from
these primitives. To name a few:

1. A Unix kernel offers many ways for processes to commuaivath one another: standard
IPC (inter-process communication), the file system, vintmeaped memory, signals, Sys-
tem V IPC, TCP sockets, signals, and so on. The Flume modeisibnly one: sending
an unreliable message fromto ¢. A Unix-compatible Flume implementation therefore
requires some mapping of all Unix communication mechanignessingle DIFC primi-
tive.

2. Every message sent between two processes entails altelokl ®epending on implemen-
tation, this label check might be computationally expemsiad slow down the system.

3. From the application designer’s perspective, messagissan silently fail, greatly com-
plicating debugging. Similarly, Unix-style flow-contretl pipes do not fit the Flume
model as given in Chapter 4, thus programmers lose reli<le |

4. Definition 3 use®, to make message sends and receives maximally permissiagjmge
a process that has capabilities always exercises themmAatitoexercise of privilege can
lead to security bugs and is best avoided (c.f.,diefused deputyroblem [43]).

This section describes tlidume systema refinement of the Flummodelfrom Chapters 3
and 4. The Flume model gives general guidelines for whatestigs a system ought to uphold
to be considered “secure” but does not dictate system sgeaiich as what APl processes
use to communicate. Some DIFC kernels like Asbestos expadgeaunreliable messages (as in
Definition 3) to applications, making reliable user-levefmntics difficult to achieve. A goal of
the Flume system is to better fit existing (i.e. reliable) &fRIr process communication—that of
Unix in particular—while upholding security in the Flume ded.

The Flume system applies DIFC controls to the Unix primifieecommunication, théile
descriptor Flume assigns aandpointto each Unix file descriptor. A process can potentially

79

80

adjust the labels on an endpoint, so that all future infoionafiow on the file descriptor, either
sent or received, is controlled by its endpoint’s labelisgs.

Relative to raw message-based communication, endpoimiglisi application program-
ming. When message delivery fails according to Definitioiit 8pes sosilently to avoid data
leaks. Such silent failures can complicate applicatioretigmment and debugging. However,
when a process attempts and fails to adjust the labels omdlgoants, the system can safely
report errors, helping the programmer debug the error. Inyncases, once processes properly
configure their endpoints, reliable IPC naturally follows.

Endpoints also make many declassification (and endorsgiaecisionsexplicit According
to Definition 3, every message a privileged process sendseaedles is implicitly declassified
(or endorsed), potentially resulting in accidental datxldisure (or endorsement). The Flume
system requires processes to explicitly mark those filergaecs that serve as avenues for de-
classification (or endorsement); others do not allow it.

6.1 Endpoints

When a procesp acquires a new file descriptor, it gets a new correspondimdpoint Each
endpointe has its own secrecy and integrity labe$s,and .. By default,S. = S, andl, = I,,.

A process owns readable endpoints for each of its readabteimees, writable endpoints for
writable resources, and read/write endpoints for thosedte bidirectional. Endpoints meet
safety constraints as follows:

Definition5. A readable endpoird is safeiff

(SE_SP)U([P_IE) g p-
A writable endpoint is safe iff
(Sp B Se) U (Ie - Ip) < DP'

A read/write endpoint is safe iff it meets both requirements

All IPC now happens between twendpoints not two processes, requiring a new version of
Definition 3.

Definition 6. A message from endpoirtto endpointf is safeiff e is writable, f is readable,
S, C Sf, andIf C I..

We can now prove that any safe message between two safe eteisailso a safe message
between the corresponding processes. Take prgcedth safe endpoing, process; with safe
endpointf, and a safe message frano f. In terms of secrecy, that the message between the
endpoints is safe implies by Definition 6 thais writable, f is readable, and. C S;. Sincee
and f are safe, Definition 5 implies that, — D, C S, andSy C S, U D,. Combining the three
observations yields:

S,—D, CS.CSfCS,uUD,

81

fil __|fil
'" Ifle] N :cze - > network

procp {——{ed] :::f-«—» procq

S ={xy S =1{}
Op={y"y ,z"} Oq = {x",x7,y"}

Figure 6-1: Processgsandg. Assume0 = {}.

Thus,S,— D, C S,UD,, and the message between processes is safe for secrecy hiyieres.
A similar argument holds for integrity.

6.2 Enforcing Safe Communication

For the Flume system to be secure in the model defined in Ohapa messages must be safe.
Thus, the Flume system enforces message safety by camgrallprocess’s endpoint configura-
tions (which mustlwaysbe safe), and by limiting the messages sent between endpdihe
exact strategy depends on the type of communication and feWume can control it.

IPC First is communication that the Flume reference monitor @amnpletely control, where
both ends of the communication are Flume processes andaaihels involving the communi-
cation are understood: for example, two Flume processa®lqg communicating over a pipe or
socket pair. Flume can proxy these channels message-tsagesdropping messages as appro-
priate. Wherp sends data tg, or vice-versa, Flume checks the corresponding endpdieida
silently dropping the data if it is unsafe according to Déiom 6. A receiving processes cannot
distinguish between a message unsent, and a message dimmaece it is unsafe; therefore,
dropped messages do not leak information.

The endpoints of such a pipe or socketpairratgable p andg can change the labels on their
endpoints so long as they maintain endpoint safety (Dedimfi), even if the new configuration
results in dropped messages. Verifying that a propdsss safe endpoints requires information
aboutp’'s labels, but not information aboyts. Thus, if a process attempts to change a mutable
endpoint’s label in an unsafe way, the system can safelyynibi process of the failure and its
specific cause. Similarly, endpoint safety may prevent ags® from dropping one or more of
its non-global capabilities, or from making certain lablehoges, until either the endpoint label
is changed or the endpoint itself is dropped.

Two processes with different process-wide labels can udpants to set up bidirectional
(i.e., reliable) communication if they have the approgrieapabilities. For example, in Figure 6-
1,pcansefS., = {z}, andg cansetS., = {x}, thus data can flow in both directions across these
endpoints. In this configuratiom,is prohibited from dropping— or ™, since so doing would

82

makee, unsafe; similarlyg cannot dropz~ or z*. Note that reliable two-way communication
is needed even in the case of a one-way Unix pipe, since pge®y flow control information

from the receiver back to the sender. Flume can safely allogway communication over a
pipe by hiding this flow control information and rendering fhipe unreliable; see Section 7.3.

File /O Second is communication that the Flume reference monitwosds not to completely
control. For example, Flume controls a process’s file I/Chweibarse granularity: once Flume
allows a process to open afile for reading or writing, it abaall future reads or writes to the file
(see Section 7.4.1). Since the reference monitor does tespse on file /O to drop messages,
it enforces safe communication solely through endpoirgl&ab

When a procesg opens a filef, p can specify which labels to apply the corresponding
endpointe;. If no labels fore; are specified, they default ¢s. When openingf for reading,p
succeeds iéy is a safe readable endpoist; C S, andl., C Iy. When opening’ for writing,

p succeeds it; is a safe writable endpoing., C Sy andly C I.,. Whenp opensf for both
reading and writinge ; must be safe, read/write, and must have labels equal to &® flt is
easy to show thai’s file /0 to f is safe under these initial conditions (Definition 3).

Because Flume does not intercept individual file 1/0O operatj a procesg must hold such
an endpoint at least until it closes the corresponding file. Moreovetaakls on file endpoints
(such aszy) areimmutable p cannot change them under any circumstances. Because bf labe
immutability, and because the initial conditions at file opaforced safety, all subsequent reads
and writes tof acrosse; are safe. This immutable endpoint preserves safety byatsyy how
the process can change its labels and capabilities. In€-gxir, say that filg; is open read/write
andS., = Sy, = {z}. Thenp cannot drop thg/~ capability, since doing so would make
unsafe. Similarlyp cannot add: to .S, despite itsz* capability; it could only do so if it also
ownedz~, which would preserve,’s safety. Again, Flume can safely report any of these errors
to p without inappropriately exposing information, since threoe depends only op’s local
state.

External Sources and Sinks Immutable endpoints also allow Flume to manage data semt int
and out of the Flume system via network connections, useiitets and the like. If the system
knows a procesp to have access to resources that allow transmission ormpteckexternal
messages (such as a network socket), it asgigas immutable read/write endpoint , with
Se, = I., = {}. Sincee, must always be safe, it must always be the caseShat D, =
I, — D, = {}. Thatis,p has the privileges required import and export all of its data

For instance, procegsin Figure 6-1 has a network socket, and therefore gets an tatiteu
endpointe | . This endpoint prevenigfrom reading export-protected data it cannot export, since
the assumption is thatwould leak the data. Thug,cannot raise5, = {y}, as such as change
would compromise | ’s safety.

Similarly, if a process has communication channels not ypeewstood by the Flume refer-
ence monitor (e.g. System V IPC objects), then Flume simpbpimes the process can expose
information at any time and gives it an endpoint that cannot be removed until the resources

83

Bob’s BOb'S
console file
1 Bob's 7" Bob’s (I ?
shell Gh editor €d)
Sh={} Sa:{} Sa= {b}
Og={b*,b"} Vie[l5 Oeg = {b*}

Figure 6-2: A configuration for Bob’s shell and editor. Hate= {b*}.

are closed. This blunt restriction can be loosened as Fhinmalerstanding of Unix resources
improves.

6.3 Examples

Endpoints help fill in the details of our earlier example®iir Section 3.3.4). For our secrecy
example, Figure 6-2 shows how Bob uses a skg]lto launch his new (potentially evil) editor.
Becausesh can write data to Bob’s terminal, it must have enendpoint, signifying its ability
to export data out of the Flume system. Bob trusts this sheadixport his data to the terminal
and nowhere else, so he launches the shell Witke Osn. Now the shell can interact with the
editor, even if the editor is viewing secret filesh launches the editor procesd with secrecy
Sed = {b} and without thé~ capability. The shell communicates with the editor via tvijpes,
one for reading and one for writing. Both endpoints in botbogsses have secrecy labgis,
allowing reliable communication between the two procesJdwese endpoints are safe for the
shell becausét € O, b= € Ogn and thereforéd € D, eds endpoint labels matceq and
are therefore also safe. Once the editor has launched, risdpeb’s secret file for reading and
writing, acquiring an immutable endpoiey with S., = {b}. The file open does not changds
existing endpoints and therefore does not interrupt conication with the shell.

Note that sinces; is immutable, it prevents the editor from changifigy to {a, b}, even
thoughat € O. This restriction makes sense; without it, Bob’s editorldawopy Alice’s secret
data into Bob’s file.

In our secrecy example, Bob’s shell proceksan communicate externally through standard
input, output and error; therefore Flume attaches an imbheitandpointe; to sh For Bob to
read one of his own files, he must either chasggto {b}, or establish a readable, immutable
endpoint with secrecyb}. Either configuration is possible (i.e., does not conflidtwi,), since
b~ € Oshandb™ € O. If shwere to read one of Alice’s files, it must likewise charfgto {a}
or allocate a new readable endpoint with secrecy I&bgl But neither configuration is possible:
a label ofSsy, = {a} would conflict withe ; and an endpoint with secredy:} is not safe given
Osh. Thus, Bob cannot view Alice’s private data from his she#.(iexport it).

In the shared-secrecy calendar example, Bob launches tloegs; that examines Alice’s
calendar file. ¢ is disconnected from Bob’s shell, and therefore does nog laaay endpoints

84

when it starts upg can then freely sef, = {a}, sincea™ € O andq has no endpoints. What if
q opened a writable filg before changing, to {a}? If f's endpoint has secrecy., = {}, then
q would fail to raiseS,, since the label change would invalidaie,. Soq cannot leak Alice’s
data to afilef if f is not export-protected. If’s endpoint has secrecy,, = {a}, thenq could
raiseS, to {a} as before.

Another implementation of the calendar service might imea server processthat Alice
and Bob both trust to work on their behalf. Thatiguns witha™ andb™ in its ownership set,
and with secrecys, = {a,b}. By default,r can only write to processes or files that have both
export protectionsr can carve out an exception for communicating with Alice’8oib’s shell
by creating endpoints with secre¢y} or {b}, respectively.

Similar examples hold for integrity protection and for peeses that read from low-integrity
sources.

Chapter 7

Implementation

We present a user-space implementation of Flume for Unitki me extensions for managing
data for large numbers of users (as in Web sites). Flumelsgmeee design is influenced by
other Unix systems that build confinement in user space, asstia [34] and Plash [94]. The
advantages of a user space design are portability, easelafrimantation, and in some sense cor-
rectness: Flume does not destabilize the kernel. The diséalyes are decreased performance
and less access to kernel data structures, which in some wedes the user-exposed semantics
more restrictive than the DIFC rules require (e.g., immigt@ndpoints on files).

Flume’s Linux implementation, like Ostia’s, runs a smalfrg@onent in the kernel: a Linux
Security Module (LSM) [109] implements Flume’s system daterposition (see Section 7.2).
The OpenBSD implementation of Flume usessiistracesystem call [80] instead, but we focus
on the Linux implementation in this description.

Figure 7-1 shows the major components of the Flume impleatient Thereference moni-
tor (RM) keeps track of each process’s labels, authorizes desglés requests to change labels
and handles system calls on its behalf. The reference nmogltes on a suite of helpers: a dedi-
cated spawner process (see Section 7.2), a remote tagy€gest Section 7.4.3), and user space
file servers (see Section 7.4.7). The Flume-aware C librealjyrects Unix system calls to the
RM and also supports the new Flume calls shown in Figure 7t#eiGnachines running Flume
can connect to the same tag registry and therefore can dimmaine underlying file systems
(e.g.,i hone) over NFS.

7.1 Confined and Unconfined Processes

To the reference monitor, all processes other than the iisefpe potential actors in the DIFC
system. A process can use the Flume system by communicatthgthe reference monitor
via RPCs sent over eontrol socket For convenience, a C library, which can be linked either
statically or dynamically, translates many system calig the relevant RPCs. The system calls
that return file descriptors (e.gopen) use file-descriptor passing over the control socket. A
process can have multiple control sockets to help with rtlafg@ading.

85

86

machine running
Flume

Flume

System spawne NES Server
/i horre

procesP i

Flumel i bc =—— | Referenceg

/ Monitor
procesQ / \ tag registry

machine
Flumel i bc / / usr /tmp | [/ihome [\
Fs Fs Fs [T tag
~— — |7 registry

Figure 7-1: High-level design of the Flume implementatibhe shaded boxes represent Flume'’s
trusted computing base.

Processes on a system running Flume are eitbafinedor unconfined By default, pro-
cesses are unconfined and have empty labels and empty ruad-glenership (i.e.0, — O =
{}). The RM assigns an unconfined process an immutable endpoisith labelsl., = S., =
{}, reflecting a conservative assumption that the process @ metwork connections to re-
mote hosts, open writable files, or an open user terminal $getion 6.2). Since a process’s
endpoints must all be safe, a process withcan add a tagto its secrecy or integrity label only
if it owns botht™ and¢~. Thus, processes with endpoint cannot view secret data unless they
are authorized to export it.

An unconfined process conforms to regular Unix access dottierks. If an unconfined
process so desires, it can issue standard system callsofika) that circumvent the Flume
RM. As they do so, standard Unix permissions prevent urlpged, unconfined processes from
reading the file system that Flume maintains. That is, fileteu®lume’s control are owned by
the userf | ume with access permissions liki6 00 for plain files and)700 for directories and
binaries. Non-root users running as a user other fHamme cannot access these files due to
standard Unix access control checks.

7.2 Confinement,spawn and flume _fork

Confined processemre those for which the reference monitor carefully costssarting condi-
tions and system calls. For any confined progedbe reference monitor installs a system call
interposition policy (via LSM) that prevengsfrom directly issuing most system calls, especially
those that yield resources outside of Flume’s purview. is ¢hntext, system calls fit three cat-
egories: (l)direct, those thap can issue directly as if it were running outside of Flume; (2)
forwarded those that the LSM forbids from making directly, but the RM performs qi's on
behalf; and (3Yorbidden which are denied via LSM and not handled by the RM. Figure 7-4
provides a partial list of which calls fall into which categs. The goal here is for the RM to

87

| abel getlabel({S,I})
Return the current processSsor I label.

capset get.caps()
For the current procegs return capability se©,,.

i nt change_label({S, |}, |abel I)

Set current process'S or I label tol, so long as the change is safe (Definition 2) and the changss ke
endpoints safe (Definition 5). Return an error code on failur

i nt drop_caps(capset O)

Reduce the calling process’s ownershigto Succeed if the new ownership keeps all endpoints safe and is
subset of the old.

| abel getfd_label({S,1}, int fd)

Get theS or I label on file descriptof d’s endpoint.

i nt change_fd_label({S,1}, int fd, |abel I)

Set theS or I label onf d’s endpoint to the given label. Return an error code if thengeawvould violate the
endpoint (Definition 5), or if the endpoint is immutable.lStucceed even if the change stops endpoint flows
(in the sense of Definition 6).

tag create_tag({EP, | P, RP})

Create a new tagfor the specified security policy (export, integrity or reatection). In the first case add
tT to O; in the second adt™ to O; and in the third add neither.

i nt flume_pipe(int »fd, token =*t)

Make a newflume_pipe, returning a file descriptor and a pipe token.

i nt claim_fd_by_token(t oken t)

Exchange the specified token for its corresponding file detecr

pi d spawn(char *=argv[], char =env[], token pipes[], [label S, Iabel I,

capset 0])

Spawn a new process with the given command line and envinonn@ollect given pipes. By default, set
secrecy, integrity and ownership to that of the callerS |ff andO are supplied and represent a permissible
setting, set labels t§, I, and ownership set t0.

pi d flume_fork(i nt nfds, const int closefds[])

Fork a copy of the current, confined process, and yield a cedifohild process. In the child, close the given
file descriptors after forking the Unix process structurg,before subjecting the child process to scrutiny.

Figure 7-2: A partial list of new API calls in Flume.

88

maintain a complete understanding 06 resources. A confined process likdrades the re-
strictions implied bye | for a more restrictive system call interface. Confined pssa@mme into
existence by one of two means: \d@pawn or flume_fork.

7.2.1 spawn

Confined and unconfined processes alike can g@dlwn to make a new confined process.
spawn combines the Unix operations éfor k and exec, to create a new process running
the supplied command. When a processpawns a new confined procegs;’s labels default
to p’s, but ¢ starts without any file descriptors or endpoinjsaccumulates endpoints as a result
of making new pipes and sockets or opening files (see Sectbh)7 System call interposition
blocks other resource-granting system calls.

Without explicit access to thfeor k stage of the spawn operation, confined processes cannot
use the Unix convention of sharing pipes or socketpairs mgtli children. Instead, Flume offers
flume_pipe andflume_socketpair, which take the same arguments as their Unix equivalents,
but both return a single file descriptor and a random, opadug@t6pipe token.” Once a process
p receives this pair, it typically communicates the pipe toteanother process(perhaps across
a call tospawn). ¢ then makes a call to the reference monitor, supplying the fmgen as an
argument, and getting back a file descriptor in return, wigdhe other logical end of the pipe
(or socketpair) that the reference monitor gave.tdlow p andg can communicate.

Processes callingpawn (and alsoflume_fork below) therefore depend on“pipe tokens”
to communicate with their children, but the primitive is raaggeneral: a process can call
flume_pipe or flume_socketpair at any time, and communicate the token to other processes
via IPC, the file system, or any other means. Hence, pipe sokarst be randomly-chosen and
unguessable: whichever process presents the token fitstwinl’ the other side ofp’s pipe
or socketpair. If, by contrast could gues®’s pipe-token, it could impersonajgs intended
counterparty, stealing or vandalizing important data.

The spawn operation takes up to six arguments: the command line toutxean initial
environment setting, an array of pipe tokens, and opticatadls. The new process’s labels are
copied from the process that callsgawn, unlessS, I, O are specified. If the creator could
change to the specifiefl, I, O labels, then those labels are applied instead. The only dile d
scriptors initially available to the new process are a airgocket and file descriptors obtained
by claiming the array of pipe tokens. The new process is metlthix child of the creating
process, but the creator receives a random, unguessakle tiokt uniquely identifies the new
process (see below for a rationale). Labels permittingctkator can wait for the new process
or send it a signal, via forwarded versionsnati t andki | | .

Internally, the reference monitor forwardpawn requests to a dedicated spawner process.
The spawner first callsor k. In the child process, the spawner (1) enables the Flume LSM
policy; (2) performs any setlabel label manipulations & fiie to execute is setlabel (see Sec-
tion 7.4.5); (3) opens the requested executable feog. sh), interpreter (e.g/ bi n/ sh) and
dynamic linker (e.g./ | i b/ | d. so) via standard Flumepen calls, invoking all of Flume’s
permission checks; (4) closes all open file descriptors mixfwe its control socket and those

89

opened in the previous step; (5) claims any file descriptgrt®ken; and (6) callexec.

The Flume LSM policy disallows allirect access to file systems by confined processes with
a notable exception. When the child cadigec in Step (6), the LSM allows access to direc-
tories (used during path lookups in the kernel) and acceetbinaries and scripts needed by
exec, so long as they were opened during Step (3). Onceitex operation completes, the
LSM closes the loophole, and rejects all future file systesesses. The Flume LSM policy
also disallowsget pi d, get ppi d, and friends. Because Linux allocates PIDs sequentially,
two confined processes could alternatively exhaust andygherLinux PID space to leak in-
formation. Thus, Flume issues its own PIDs (chosen randdraiy a sparse space) and hides
Linux PIDs from confined processes. The standard LSM framledistributed with Linux does
not interpose oget pi d and friends, but Flume’s small kernel patch adds LSM hoolsdhn
disable those calls. Flume still works without the patch &igws confined processes to leak
data through PIDs.

Confined processes run as an unprivileged user with whonm otiggivileged users cannot
interfere (along the same lines as Apachw/av user). If an adversary were to take over a con-
fined process, it could issue only those system calls alldwatie Flume LSM policy. All other
system interaction happens through the reference momtbisasubject to Flume’s restrictions.

Finally, Linux notifies the spawner when a spawned procetss. ekhe spawner reports this
fact to the creating process via the reference monitor &l&hllow communication between the
exiting and creating process.

7.2.2 flume _fork

Confined processes can also fork other confined processéamia fork, an approximation of
standard UniX or k. Fork is preferable to spawn in some cases for one major megsfor-
mance. On the Linux machine used for our benchmarks (seet&h@) forking one Python
process from another is five times faster than spawning #raeshew Python process anew.
Such a discrepancy is exacerbated by Flume’s system calhese, which makes the many
open calls involved with spawning a new Python process (and itngprruntime libraries) all
the more expensive. Thus, a busy system (like a Web servghtmihose to spawn one Python
process, importing all of the necessary libraries, thek émce for each incoming client request,
rather than spawning each time.

The difficulty in forking in a DIFC context isharedfile descriptors. As an example, consider
the attack that Figure 7-3 depicts. The parent propestends to steal the data stored in the file
f, even thoughS,, = {} andS; = {}. To pull off the heistp first launches @ourceprocess,
whose task is simply to output a sequence of integers,(lik@, 3,...), to its standard output.
The parenp listens to the source on its standard input. It then forksild e so that after the
fork, p andc share the pipe to the source. Nextaises its label t&. = {t¢}, reads the contents
of the file f (in this case 5”), then reads that many integers from standard input. Aftsiting
a sufficient timep reads from its standard input, retrieving the vatugished to communicate
to it, and therefore the value storedjfin

The shared resourgeandc use to communicate in this attack is the stream of data coming

90

Parent (p) Tle 5
S,=1{} € 6,7,8,9,... Source
P fd=1
1] 5oy
0,1,2,3,4
Child (c) fd=0 |
Sc=1{t file (f)

fd=3 |« value = 5

S = {t}

Figure 7-3: An attack againétor k that allows file descriptor sharing between parent and child

from the source process, which they can both read and thenefodify with their shared file
descriptor (as noted by IX’s authors [66]). Thus, a fork fonfined processes cannot allow
parents to share file descriptors with their children. Andrenobviously, mmaped memory
regions established in the parent process and inheritelebghtld are verboten.

Given these constraints, forking among confined processpuas as follows:

1.

The parent callBume _fork, providing as an argument the set of all file descriptorsdsel
in the child.

. In the library, the parent asks the reference monitor feeva control socket (eventually to

give to the child). The parent also creates a temporary pipe.

. The parent calls standard Uriwr k. The parent closes the child’s control socket, and the

child’s end of the temporary pipe. It then writes a byte tceitsl of the temporary pipe.

. The child closes the parent’s control socket, and thenparend of the temporary pipe.

It also closes all of the file descriptors passed in as argtsmerflume_fork. It waits
on its side of the pipe for an incoming byte. Once received,dhild has exactly one
file descriptor—its own control socket. Furthermore, it Wsothat it controls the only
reference to that file descriptor, since it received the bygeparent serfter it closed its
copy of that same file descriptor.

. The child then calls into the reference monitor, asking'dmshared fate,” i.e., the ability

to set its labels independently of its parent’s. Before #ference monitor grants this
request, it calls into the kernel to scrutinize the childsweing:

(a) The child has nsharedmmaped memory regions

(b) The child has only open file descriptor, its control sacke

(c) The child’s end of the control socket only has one refegeiand that the other side
is controlled by the reference monitor.

. On success, the child gets independence and confinernesut; them reopen pipes using

pipe tokens inherited in its address space.

91

7. The parent gets, as a return value, the process ID of tleioicess.

The goal of this protocol is to ensure that if parent and cbild set labels independently
(as in Figure 7-3's attack), then they share no communicati@mnnels at the time of the fork.
The checks in Step 5 ensure no communication via file descsipand no communication via
sharedmaped memory pages. One might be tempted to ensure the chilibmasaped pages;
however, this restriction is impractical, since many comgrds of the standard library (e.g.,
dynamic library loading, configuration file reading, dynamiemory allocation) usemap. In
all case$, those mappings aféAP_PRI VATE and therefore cannot be used to write to a child
across d or k.

In Step 5, the kernel checks that the child has only a contrciet open. If the child could
inherit arbitrary file descriptors from its parent, the l&lrohecks would be considerably more
complicated, forcing the Flume LSM to look deep into Linuxalatructures, which are bound
to change over time. The “one-file policy” significantly silifips the kernel checks required,
yielding another application fdtume_pipe and pipe tokens.

As Figure 7-4 shows, confined processes are still free tdlembtandard Unik or k. How-
ever, if they do, the reference monitor treats the parenthiid as the same process. If the child
changes label, the label change also affects the parentedindhe parent and child can com-
municate with each other viamaped memory or shared file descriptor ends, but because their
labels cannot diverge, they cannot use the channels to mfmrenation against safety rules.

7.3 IPC

Whenp and g establish communication as a result of pipe token exchahgsfjle descriptors
held byp andq actually lead to the reference monitor, which passes dafadozd forth between
the two processes. The reference monitor proxies so it damipt communication if either
process changes its labels in a way that would make endpdormation flow unsafe. (Recall
that the RM cannot reject such a change, since so doing woulcbg top information about’s
labels, or vice versa).

Flume takes special care to prevent unsafe information flulen the processes at either
end of a pipe or socket have different labels. Consider tvoocgsse® andg connected by a
pipe or socket where the relevant endpoint labels are the sarthe process labels.3f = .S,
andl, = I, data is free to flow in both directions, and communicatioreigble as in standard
Unix. That is, ifp is writing faster tharny can read, then the reference monitor will buffer up
to a fixed number of bytes, but then will stop reading froneventually blocking’s ability to
write. If S, € S, or I, C I,, data cannot flow frong to p. Communication becomes one-way
in the IFC sense and is no longer reliable in the Unix sense.ré&terence monitor will deliver
messages fromto ¢, as before, but will always be willing to read frgmregardless of whether
g exited or stopped reading. As the reference monitor reads frwithout the ability to write to
q (perhaps becausggestopped reading), it buffers the data in a fixed-size queusilantly drops
all overflow. Conversely, all data flowing fromto p (including an EOF marker) is hidden from

1with the exception oficonv ingl i bc 2. 6. 1.

92

Direct | Forwarded
cl ock_gettine,cl ose(file) , dup, dup2, exi t, access, bi nd(Unix-domain socket, chdi r,
fchnod, f st at, get gi d, get ui d, get sockopt, cl ose(socke}, f1 ume_fork' get cwd, get pi d, kil l,
| seek, mmap, pi pe, pol | ,read, readv, r ecvnsg, I'ink, I stat,nkdir,open,syniink,readlink,
sel ect, sendnsg, set sockopt , set gi d, rdir, spawn’, stat,unlink,utines,wait ...

si gprocmask, socketpair,wite,witev
Forbidden

bi nd(network socket, execve, get si d*, get pgrp*,
get pgi d*, get ppi d*, ptrace, setuid...

Figure 7-4: A partial list of system calls available to coefirprocesses in Flume. Those marked
with “*” could be forwarded with better reference monitopgwort. Those marked withi" are
specific to Flume.

p. The reference monitor buffers this data at first, then dibpsce its queue overflows. if or

q changes its labels so théf = S, andI, = I,, then the reference monitor flushes all buffered
data and EOF markers. In practice, one-way communicatioarigersome and rarely used; see
Section 10.1 for more details.

Spawned Flume processes can also establish and connedktdddmain sockets. Creating a
socket file is akin to creating a file and keeping it open fotingiand follows the same rules (see
the next section). Connecting to a Unix domain socket is &kiopening that file for reading.
Assuming a client and server are permitted to connect, thegive new file descriptors and
communicate with the proxy mechanism described above.

7.4 Persistence

The Flume system aims to provide file system semantics tlpabaipnate those of Unix, while
obeying DIFC constraints. Flume must apply endpoints tamegdiles to prevent data flows
through the file system that are against DIFC rules. It alsstranforce a haming scheme for
files in a standard directory hierarchy that does not alloappropriate release of information.
Additionally, Flume must solve problems specific to DIFCglsas persistent storage and man-
agement of capabilities.

7.4.1 Files and Endpoints

To get Unix-like semantics, a process under Flume (whetbefired or not) must have direct
access to the Unix file descriptor for any file it opens, in daseeds to calimrap on that
descriptor. Thus, the RM performogen on a process’s behalf and sends it the resulting file
descriptor. The reference monitor cannot then interruptpfocess’s reads and writes to the
file if the process changes its label in a way that make that flogafe, as it does with pipes.
Instead, the reference monitor relies on immutable endpdinrestrict the way the process can
henceforward change its labels.

File opens work as described in Section 6.2, with two addgioestrictions in the case of
writing. First, Flume assigns read/write endpoints to aitable file descriptors. A writer can

93

learn information about a file’s size by observingi t e’s or| seek’s return codes, and hence
can “read” the file. The read/write endpoint captures theseorative assumption (as in HiStar)
that writing always implies reading. Second, a ffldas an immutablevrite-protect setV; in
addition to its immutable label§; and;. A processp can only write to objectf if it owns

at least one capability il’; (i.e., O, N Wy # {}). This mechanism allows write protection
of files in a manner similar to Unix’s; only programs with theriect credentials (capabilities)
can write files with non-emptyV; sets. By convention, write-protect tagis the same as an
integrity-protect tagt~ € O, andt* is closely guarded. Butdoes not appear ihor S labels;
only the capabilityt™ has any use. The presencetofin 1 yields the policy that processes
must ownt™ to write f.

File closes use the standard Linakose. The reference monitor does not “understand” a
process’s internals well enough to know if a file is closedhwitrtainty. Better LSM support can
fix this shortcoming, but for now, Flume makes the consergaissumption that once a process
has opened a file, it remains open until the process exits.Stivkiness” of these endpoints is
indeed a shortcoming of the system, as it complicates agifgit development. Future versions
of Flume might do better file-descriptor accounting, allogvia process to drop an immutable
endpoint after it closes the last reference to a file.

7.4.2 File Metadata

While Section 3.3 explains how file contents fit into Flume®-0, information can also flow
through meta-data: file names, file attributes, and file abElume does not maintain explicit
labels for these items. Instead, Flume uses a directoty&d ta control access to the names and
labels of files inside the directory, and a file’s label to coh&iccess to the file’s other attributes
(such as length and modification time). Flume considersahpath lookup involves the process
reading the contents of the directories in the path. Flunpdiepits information flow rules to
this implicitly labeled data, with the following implicains for applications.

A directory can contain secret files and yet still be readatitee the directory’s label can be
less restrictive than the labels of the files it contains. idgity the root directory has an empty
S label and directories become more secret as one goes dowagrity labels typically start
out at7 at the root directory and are non-increasing as one descendsat the path name to a
high-integrity file has at least as high integrity as the file.

The file system’s increasing secrecy with depth means a gsamenmonly stores secret files
under a directory that is less secret. The Flume label rulegept a process from creating a file
in a directory that is less secret than the process, sintevihiad leak information through the
file’s name and existence. Instead, the process can “pateréhe files and subdirectories it
needs early in its life, before it has raisedSt$abel and read any private data. First, the process
creates empty files with restrictive file labels. The proaassthen raise it§' label, read private
data, and write output to its files.

If a processp with labels S, and I,, wants to spontaneously create a fflavith the same
labels, without pre-creating it, Flume offers a namespageélly filled with precreated directo-
ries for each(S,, I,,) pair. p can write to directory of the formi hone/ srl(1,).srl(S,), where

94

srl(L) is a serialized representation of laldel This directory has integrity level, and secrecy
level S,,. Within that directory, the regular file system rules applyocesses cannot directly open
or read the i hone directory, though they can traverse it on the way to openieg tiontained
therein.

7.4.3 Persistent Privileges

In addition to supporting legacy Unix-like semantics, Feiptovides persistence for capabilities
and file labels. A process acquires capabilities when itteseaew tags but loses those capabil-
ities when it exits. In some cases, this loss of capabilitggglers data permanently unreadable
or unwritable (in the case of integrity). Consider a ugestoring export-protected data on the
server. A process acting aris behalf can create export-protect tagand write a filef with

Sy = {t.}, but if t,~ evaporates when the process exits, the file becomes indieessall
processes on the system.

Flume has a simple mechanism for sharing capabilitiestlikeacross processes, reboots,
and multiple machines in a server cluster. First, Flumeuhet a “central tag registry” that
helps applications give long-term meaning to tags and dheh It can act as a cluster-wide
service for large installations, and is trusted by all maekiin the cluster. The tag registry
maintains three persistent databases: one that maps ‘toigms” to capabilities, one that re-
members the meanings of capability groups, and a third datafor extended file attributes (see
Section 7.4.7).

A login token is an opaque byte string, possession of whitilesnthe holding process to a
particular capability. A process that owns a capabitigan ask its RM to give it a login token
for ¢. On such a request, the RM asks the tag registry to createkbg;tthe tag registry records
the token anda in a persistent database. A process that knows a token catsdkl to give
it ownership of the corresponding capability. The operatsoicceeds if the RM can find the
token and corresponding capability in the registry. Suchcdify is useful, for instance, in the
management of Web sessions. The privilegeses during a Web session can be converted to
such a token and then stored @8 Web browser as an HTTP cookie, allowingo recover the
necessary capabilities before each page load.

When creating new tokens, the tag registry chooses tokenlemay from a large space so
that they are difficult to forge. It also can attach a timeaugéch token, useful when making
browser cookies good for one Web session only.

7.4.4 Groups

Some trusted servers keep many persistent capabilitiescad benefit from a simpler manage-
ment mechanism than keeping a separate login token for egetbidity. For example, consider
a “finger server” that users trust to declassify and makeippilrtions of their otherwise private
data. Each user protecting data with export-protect tagmust grant,,— to the finger server.
Instead of directly collecting these capabilities (eveamyet it starts up), the finger server
owns a group’ containing the capabilities it uses for declassificatiomwn@®g a capability for
G implies owning all capabilities contained . When a new uses is added to the system,

95

v can addt,” to G, instantly allowing the finger server to declassifg files. Groups can
also contain group capabilities, meaning the group stradiarms a directed graph. Like any
other capability, group capabilities are transferable, @m be made persistent with the scheme
described in Section 7.4.3.

Capability groups are a scalability and programmabilitysacte over previous DIFC pro-
posals. In practice, secrecy and integrity labels stay Is(ieagls than 5 tags), and capability
groups allow ownership sets to stay small, too. All groupiinfation is stored in the central tag
registry, so that multiple machines in a cluster can agreeluoh capabilities a group contains.
Reference monitors contact the tag registry when perfayi@hel changes. Since groups could
grow to contain many capabilities, a reference monitor dussneed to download the entire
group membership when checking label change safety. Ihsitegerforms queries of the form
“Iis capability c a member of group,” and the registry can reply “yes,” “no” or “maybe, check
these subgroups.” In our experience, groups graphs formtshushy trees, and the described
protocol is efficient and amenable to caching.

Finally, so that the groups themselves do not leak inforomati-lume models groups as ob-
jects, like files on the file system. When created, a groupstakemmutable labels for secrecy
and integrity, and also (at the creator’s discretion) aempitotect capability set. Processes mod-
ifying a group’s membership must be able to write to the grobject (currently, only addition
is supported). Processes using groups in their label chapeyations are effectively reading the
groups; therefore, processes can only use a group capabitihieir ownership sets if they can
observe the group object.

7.45 Setlabel

Flume provides &etlabelfacility, analogous to Unix'setuidor HiStar's gates, that is the best
way for a process without privileges to launch a declassiietlabel tightly couples a persistent
capability with a program that is allowed to exercise it. Alaeel file contains a login token
and a command to execute. Flume never allows a setlabel file tead, to prevent release of
the login token. Instead, the files and ! labels limit which processes can execute the file. A
process whos# and! allow it to read the setlabel file may ask the reference motdtgpawn
the file. The reference monitor executes the command givéineirfile, granting the spawned
process the capability referred to by the login token.

An example use for a setlabel process is a password checkproo&ssy has a hash of a
password for a user, and wants to check if that hash matchéspassword in a secret password
file. The password file is labelesl; = {t}, wheret is an export protect tag. The password
checkerg runs as a setlabel process. The setlabel file contains theoptite password checker
binary, and also a login token for. p launches;, feeding it the uset and the supposed hash
of u's password.q reads in the password file, checks the hash, and outputsssuac@ilure to
p. This output declassifies one bit about the password fileitzar@fore requires the exercise of
t.

Setlabel files can also specify a minimum integrity laldel, The RM only allows a process
p to execute such a setlabel filelif C 7,,. This minimum integrity requirement helps defend the

96

setlabel process from surprises in its environment (suehteslL D_L1 BRARY_PATH).

7.4.6 Privileged Filters

Finally, in the application we've built, we have found a nded automatic endorsement and
declassification of files; see Section 8.7 for a detailed vabtin. A process can creatditer

to replace “find label” Lfing) With a “replace label” Lrep) if it owns the privileges to add all
tags inLrepi — Lfing and to subtract all tags ihsing — Lrepi. The filter appears as a file in the file
system, similar to a setlabel file. Any other procgs$isat can read this file can activate this filter.
After activation, whenevep tries to open a file for reading whose file label contains allttgs

in Lfing, Flume replaces those tags withep before it decides whether to allow the process to
open the file. A process can activate multiple filters, conmgptheir effects.

7.4.7 File System Implementation

The reference monitor runs a suite of user-space file sereeepses, each responsible for file
system operations on a partition of the namespace. Thesrefermonitor forwards requests
such aopen andnkdi r to the appropriate file server. To reduce the damage in caske¢h
server code has bugs, each server runs as a distinct nonsercand i€ hr oot ed into the part
of the underlying file system that it is using. The usual Unigess-control policies hide the
underlying file system from unprivileged processes outsideume.

Each file server process store files and directories onerferin an underlying conventional
file system. It stores labels in the extended attributes ci @aderlying file and directory. To
help larger labels fit into small extended attributes, tlyeréayistry provides a service that gener-
ates small persistent nicknames for labels. Flume file secan also present entire underlying
read-only file systems (such Asisr) as-is to Flume-confined software, applying a single label
to all files contained therein. The Flume system administrdétermines this configuration.

Since Linux’s NFS client implementation does not suppoteeaed attributes, Flume sup-
ports an alternate plan when running over an NFS-mountedydeem. In this case, Flume
stores persistent label nicknames as 60-bit integers,a&pbss the user and group ID fields of
a file's metadata. The fake UID/GID pairs written to the filstgyn are in the rang@3’, 231),
avoiding UIDs and GIDs already in use. This approach unfately requires the file server to
run as root, for access to tfie hown call.

Simultaneous use of the same underlying file system by nieifilume file server processes
might result in lack of atomicity for label checks and depamtcoperations. For example, check-
ing that file creation is allowed in a directory and actualtgating the file should be atomic.
Race conditions might arise when a cluster of hosts shard=&fike system. Flume ensures the
necessary atomicity by operating on file descriptors ratiin full path names, using system
calls such as Linux'spenat .

The DIFC rules require that a process must read all dirextdn any path name it uses.
One approach is to laboriously check each directory in agpath name. In practice, however,
applications arrange their directory hierarchies so tbatexy increases and integrity decreases
as one descends. The Flume implementation enforces thasirogd with no practical loss of

97

generality. Flume can thus optimize the path check: if agss@an read a fil¢, it must also
be able to read all of’'s ancestors, so there is no need to check. If the file doesxisita@ the
process cannot read it, Flume reverts to checking each pathanent, returning an error when
it first encounters a component that does not exist or carenctd.

At present, Flume supports most but not all of Unix’s sentanti he current implementation
allows renames and creation of hard links only within theeairectory as the original file. And
Flume implements the per-process working directory by rabering a path name per process,
which will deviate from Unix behavior if directories are gned.

Flume'’s file system has shortcomings in terms of securityuAconfined process with Unix
super-user privileges can use the underlying file systeettly; circumventing all of Flume’s
protections. This freedom can be a valuable aid for systamirastrators, as well as an opportu-
nity for attackers. Also, Flume does not avoid covert chéredated to storage exhaustion and
disk quotas. A solution would require deeper kernel integna(as in HiStar).

7.5 Implementation Complexity and TCB

The RM, spawner, file servers, and tag registry are all paRiwhe’s trusted computing base.
We implemented them in C++ using the Tame event system [5@{.chlunting comments and
blank lines, the RM is approximately 14,000 LOC, the spavairut 1,000 LOC, the file server
2,500 LOC, and the tag registry about 3,500 LOC. The Flume lissébout 500 LOC; the patch
to the LSM framework foget pi d and the like is less than 100 lines. Totaling these counts, we
see Flume's total TCB (incremental to Linux kernel and ugaice) is about 21,500 LOC.
Flume’s version ofl i bc, the dynamic linker and various client libraries (like tho®r
Python) are not part of the trusted computing base and cam lnays without compromising
security guarantees. These libraries number about 6,0@8 bf C code and 1,000 lines of
Python, again not counting comments and empty lines.

98

Chapter 8

Application

This section explores Flume’s ability to enhance the sgcofioff-the-shelf software. We first
describe MoinMoin [68], a popular Web publishing systemhwis own security policies. We
then describe FlumeWiki, a system that is derived from Maitdnforces the Moin’s policies
with Flume'’s DIFC mechanisms. FlumeWiki goes further, adda new security policy that
offers end-to-end integrity protection against buggy MWain plug-ins. The resulting system
substantially reduces the amount of trusted applicatia®co

8.1 MoinMoin Wiki

MoinMoin is a popular Python-based Web publishing system,(i'wiki”) that allows Web
clients to read and modify server-hosted pages. Moin igydesi to share documents between
users, but each page can have an access control list (AQLgdkiarns which users and groups
can access or modify it. For example, if a company’s engingaefocument is only meant to be
read by the engineers and their program manager Alice, ttiendent would have the read ACL
(alice, engineers), where “alice” is an individual and “gr@grs” is a group containing all the
engineers.

Unfortunately, Moin’s ACL mechanism has been a source afisiggcproblems. Moin com-
prises over 91,000 lines of code in 349 modules. It checkd A€zLs in 41 places across 22
different modules and write ACLs in 19 places across 12 giffe modules. The danger is that
an ACL check could have easily been omitted. Indeed, a publirerability database [73] and
MoinMoin’s internal bug tracker [68] show at least five recACL-bypass vulnerabilities. (We
do not address cross-site scripting attacks, also memtionkeoth forums.) In addition to ACL
bugs, any bug in Moin’s large codebase that exposes a rempleitecould be used to leak
private data or tamper with the site’s data.

Moin also supports plug-ins, for instance “skins” that ajparthe way it renders pages in
HTML. Site administrators download plug-ins and instadirtihsite-wide, but buggy or malicious
plug-ins can introduce further security problems. Plug-@tan violate Moin’s ACL policies.
They also can wittingly or unwittingly misrender a page, ftrsing users with incorrect output.

99

100

Flume Server
pmagr.py

httpd |—f wikilaunch <] wikipy |
httpd] wikilaunch [«—] wikipy |

Figure 8-1: FlumeWiki application overview, showing two miany process pipelines. The
top request is during a session login; the bottom requesiria Bubsequent logged-in request.
Flume-oblivious processes are unshaded, unconfined gexese striped, and confined pro-
cesses are shaded.

Port 8(

A site administrator may want to install a plug-in for sometpaf the site, but not all of it.
For example, the engineering company’s Moin administratay only trust Moin’s base code
to edit and render engineering documents, but she may waatlote plug-ins to run on other
portions of the site. Currently, this policy is difficult toferce because Python can dynamically
load plug-ins at any time; a bug in Moin could cause it to loattusted plug-ins accidentally.

8.2 Fluming MoinMoin

Flume’s approach for enhancing Moin’s read and write ptaiads to factor out security code
into a small, isolated security module, and leave the retanh largely unchanged. The security
module needs to configure only a Flume DIFC policy and therMaim according to that policy.
This division of labor substantially reduces the amountro$ted code and the potential for
security-violating bugs. In addition, the security modaben impose end-to-end integrity by
forcing the untrusted portion to run with a non-empty intiggiabel, yielding guarantees of the
form: “no plug-ins touched the data on this page at any tinmé¥endorv’s plug-in touched this
data but no other plug-ins did.”

8.3 FlumeWiki Overview

Figure 8-1 illustrates the four main components of the FMfikésystem. FlumeWiki uses an
unmodified Apache Web servdt{pd) for the front-end request handlingviki.py is the bulk
of the application code, consisting of mostly unmodified Mdoin code. pmgr.py is a small
trusted program that manages usernames and passwordss @swa setlabel program so that it
may compare submitted passwords against read-protecgbegdan the servewikilaunch is
the small trusted security module; it is responsible foelipteting the Web request, launching
wiki.py with the correct DIFC policy and proxyingikilaunch’s response back to Apache. Be-
cause it communicates with resources outside of Flumelfttpd), it is unconfined and has an
e endpoint.

When a typical HTTP request enters the system it containslibet’'s username: and an

101

login token. httpd receives the request and launckekilaunch as a CGI processwikilaunch
requestsu’s capabilities from the RM using the authentication tokéinthen sets up a DIFC
policy by spawning wiki.py with appropriateS, I and O. wiki.py renders the page's HTML,
sends it towikilaunch over a pipe and exitswikilaunch forwards the HTML back tdittpd
which finally sends it back ta’s browser. wiki.py’s S label prevents it from exporting data
without the help ofwikilaunch.

8.4 Principals, Tags and Capabilities

FlumeWiki enforces security at the level of principals, @himay be users or ACL-groups
(which are groups of users). Each principahas an export-protect tag. and a write-protect
tagw,. Principalx also has a capability grou@, = {e, ", w, " }.

If userw is a member of ACL-groug with read-write privileges, her capability group,
also containgx, which allows her to read and modifys private and write-protected data. If
useru is a member ofy with read-only privileges, her capability group, instead contains
Gy° = {eg~ } which provides enough capabilities to read and expuriprivate data but not
modify it.

Each Web page on a FlumeWiki site may be export-protectetbawndite-protected. Export-
protected pages have the secrecy label e, wherez is the principal allowed to read and export
it. 2’s write-protected pages have the write-protect capgtskitV = {w,*}.

8.5 Acquiring and Granting Capabilities

When a uset: logs into FlumeWiki at the beginning of a session, she prewider username and
passwordwikilaunch the contacts the principal managpn(gr.py) which verifiesu’s password
and creates a temporary session token (as described imiS&cti.3) foru’s capability group
G,. wikilaunch saves this session token as a cookieuaWeb browser and on subsequent
requestsyikilaunch uses the cookie to clair@,, from the RM. It then determines what page
is requesting and what and labels to use when spawnimgki.py. Note thatwikilaunch only
receives capabilities that is supposed to have; it cannot accidentally gnaii.py anything
outside ofGG,,. Internally, the principal manager stores a hash of eachuwisgassword, read-
protected byr,,. pmgr.py runs as a setlabel program with a capability group contgiewvery
users'r, tag.

8.6 Export- and Write-Protection Policies

wikilaunch handles requests that read pages differently from thogewttige. If u's request
is for a read, and, has at least read access for groyps. .., g,, thenwikilaunch spawns
a newwiki.py processg with S, = {ey,eqg,,...,€4,} andO, = O, allowing the standard
MoinMoin code in FlumeWiki transparent read access to fitesuser is allowed to read (see
Figure 8-2). For a request that involves creating or modgya pagewikilaunch looks at the

102

u's
browser

« - > httpd wikilaunch (p) wiki.py ()

S = {a) S = {a)
O =OUfa} Og=0 [Ufw,"}]

Figure 8-2: Label setup for eead or write request in FlumeWikiwiki.py only gets capability
w, T if writing. The target page is export- and write-protectecuiser.

directoryd in which the page resides. dfis protected by an export-protect tag, wikilaunch
setswiki.py’s S = {e,}. If d is also protected by a write-protect tag., wikilaunch sets
wiki.py's W = {w,*} (also shown in Figure 8-2). If the useris not authorized to perform the
requested actiorwikilaunch will fail when trying to spawnwiki.py and notify the user of their
transgression. Finallyyikilaunch sets its secrecy label equal to thataki.py so that they may
share bi-directional pipe communication.

This DIFC policy provides three security properties. Fwakilaunch’s S label ensures that
only data the logged-in user is allowed to see can flow frgki.py to the browser. Second, any
other form of output produced hwyiki.py (for example a file) will also have a label containiag
or somee,, so that other userstikilaunch or wiki.py processes cannot reveal that output (since
they lacke, ™ or e, ™). Third, it provides discretionary write control: only m@sses that own
w, T can overwriter’s files.

8.7 End-to-End Integrity

In addition to read and write protection policies, FlumelWGkn optionally use Flume’s in-
tegrity mechanisms to guard against accidental executiamiusted dynamically-linked [i-
braries or Python libraries like Moin plug-ins. The codetta@ython program will execute is
difficult to predict and thus difficult to inspect staticallgince it depends on settings such as
LD_LI BRARY_PATH, Python’s class search path, and other run-time decisions.

FlumeWiki enforces an integrity constraint on the code firaduced each page and then
makes that integrity value visible to users. By defaultyardde in the base FlumeWiki distri-
bution is allowed to be involved in displaying a page. Howeifea page has a name like f,
wherew is the name of a third party vendor, then FlumeWiki also alam@ndoru’s software to
participate in generating the page.

The default integrity policy operates as follows. Duringtallation, all files in the distribu-
tion get! = {i,}, wherei,, represents the integrity of the base distributi@nkilaunch starts
wiki.py with I = {4, }, which guarantees that the program will never read any filelding
dynamically-loaded program text) with an integrity lableht doesn’t contairi,,. wikilaunch
sets its own label td = {i,,}. Then, ifwiki.py drops its integrity tol = {}, wikilaunch will
be unable to receive its responses. This arrangement nearallitproperly created wiki doc-
uments havd = {i,, }, which indicates that they were created with the base bigtan alone.

In this manner, a user gets an end-to-end integrity guarantee: all code involvitd e@ollecting

103

u's input, writing u’s data to disk, retrieving the data, formatting the dataj antputting the
data had,, in its label and therefore involved only the base FlumeWiiiwsare.

For pages that allow the use of plug-in codekilaunch launcheswiki.py with I = {i,}
to allow v's plug-in code to participate in the page’s rendering. Hasvethe plug-in relies on
FlumeWiki code during processing, which it cannot read lof tlisk: FlumeWiki’s code does
not havei, in its integrity label. Fowiki.py to read FlumeWiki’'s code, it would need to reduce
its integrity label tol = {}, ruling out all future hopes of regaining non-empty intggand
outputting towikilaunch. Filters (see Section 7.4.6) provide the solution.

The site administrator who instaliss plug-in owns the capability, ™, and thus can create
an integrity filter that replaces labels of the fofm= {i,, } with {i,,,4,}. This filter implements
the idea that vendar’s code trusts FlumeWiki code. With this filter in plasikilaunch can set
wiki.py’s and its own integrity labels té = {i, }, thus gaining assurance that any data returned
was only touched by vendars and FlumeWiki’'s code.

8.8 Principal Management

FlumeWiki stores/’s private data including her email address and site preta=in the i honme/
file system with the labels:S = {r,} and write-protection’’ = {w, "} which read and
write protects it from other users. The principal managdnme&chanisms are not specific to
FlumeWiki and could be used in other similar systems.

A FlumeWiki installation has a special administrator acaqul) whoseG 4 contains a capa-
bility for each principaI’Sr;. The administrator’s powers are exercised by a “principahager,”

a setlabel executable calledgr . py, that runs withl = {i 4} and withO = G 4. The integrity
restriction preventpnygr . py from accidentally referencing low-integrity shared lities or
Python libraries. The FlumeWiki user interface ryomgyr . py to perform tasks that require ad-
ministrator privileges, which includ€ér eat eUser , Logi nUser , Cr eat eUser G- oup and

I nviteUser ToG oup.

Cr eat eUser creates the tags mentioned in Section 8.4 and puts them iwlg neeated
G,. It adds the new user’s], to G4 so that the administrator will be able to read the user’s
passwd. r p but not the user’'s documents. Finally the principal managesites the new user’s
home directory angasswd. r p.

When creating a new grougp the principal manager creates the standard set of tags and
capabilities, and then grants accessfo(the capability group containing all gfs capabilities)
to whomever the group administrator is. The principal ma&nadso creates another capability
groqu; = {e, ,mu ", } for read only acces® g¢’'s data. Through the principal manager,
g's administrator can extend invitations to other princgpah the system to join group If ¢’s
administrator wishes to grantread access tg, then the principal manager on his behalf creates
a new login token foG; and writes it to a read-protected file ir's home directory. When,
logs in next, he can accept read-only membership jniby addingG; to his capability group
G.. The same process is followed for read/write access, ubmgdpability groug, instead
of G’g. Note that since capabilities are transferable, any memibgwith read access tg can
grant this capability to other users on the system (and aityifor read/write access).

104

Logi nUser is the implementation of the steps described in Section 8.5.

8.9 Discussion

Adapting Moin to Flume required roughly 1,000 lines of new+Caode forwikilaunch, and
modifications to about 1,000 out of Moin’s 91,000 lines oftiyt. We did not modify or even
recompile Apache or the Python interpreter, even thoughd?yis spawned by Flume. The
changes to Moin were in its login procedure, access coristd, land file handling, which we
modified to observe and manipulate DIFC controls (like psscabels and endpoint labels).
Most of these changes are not user-visible. Though wrappegrams likewikilaunch could be
expressed in other DIFC systems like Asbestos or HiStaintegration within Moin would be
difficult without an application-level API like the one pesged here.

An advantage of the DIFC approach is that we did not need terstethd all of Moin’s code.
Becausewiki.py always runs within Flume’s confines, we need only understaifdaunch to
grasp FlumeWiki’'s security policywikilaunch is small, and auditing it gave us confidence in
the overall security of FlumeWiki, despite any bugs that ragigt in the original Moin code or
that we may have introduced while adapting the code.

Time did not permit the adaptation of all MoinMoin’s featsysuch as internationalization,
indexing, and hit counters. To Flume, these features attémlpak data through shared files,
so they fail with Flume permission errors. FlumeWiki couknable them with specialized
declassifiers.

Chapter 9

Evaluation

In evaluating Flume and FlumeWiki we consider whether thaprbove system security, how
much of a performance penalty they impose and whether Fhigoaling mechanisms are effec-
tive.

For security, we find that Flume prevents ACL vulnerabititend even helps discover new
vulnerabilities. For performance, we find that Flume addsnfi35—-28@s of overhead to in-
terposed system calls, which is significant. However, atstfstem level, the throughput and
latency of FlumeWiki is within 45% and 35% of the unmodified ifdoin wiki, respectively,
and Flume’s clustering ability enables FlumeWiki to scaésydnd a single machine as Web
applications commonly do.

9.1 Security

The most important evaluation criterion for Flume is wheihgnproves the security of existing
systems. Of the five recent ACL bypass vulnerabilities [73, three are present in the Moin-
Moin version (1.5.6) we forked to create FlumeWiki. One afg@ vulnerabilities is in a feature
disabled in FlumeWiki. The other two were discovered in cBileneWiki indeed inherits from
Moin. We verified that FlumeWiki still “implements” Moin’srainal buggy behavior and that
the Flume security architecture prevents these bugs freealiag private data.

To make FlumeWiki function in the first place, we had to idBntind solve a previously
undocumented vulnerability in Moin. The original Moin lealata through its global names-
pace. Forinstance, a user Bob can prove that the secret éotReasonsToFi r eBob exists
by trying and failing to create the document himself. By cast, Flume’s IFC rules forced
FlumeWiki to be built in a way that doesn’t leak informatidwdugh its namespace.

9.2 Interposition Overhead

To evaluate the performance overhead when Flume interpossgstem calls, we measured the
system call latencies shown in Figure 9-1. In all of theseserments, the server running Linux

105

106

Operation Linux Flume diff. mult.
nkdi r 86.0 371.1 285.2 4.3
rodir 13.8 106.8 93.0 7.7
open

— create 12,5 200.2 187.7 16.0
— exists 3.2 1103 107.1 345
— exists, inlined 3.3 41.0 37.7 125
— does not exist 4.3 101.4 97.1 23.6
— does not exist, inlined 4.2 39.8 35.6 9.5
st at 2.8 98.1 95.3 345
— inlined 2.8 38.7 359 137
cl ose 0.6 0.9 0.2 1.3
unl i nk 15.4 110.0 94.6 7.2
sym i nk 9.5 106.8 97.3 11.2
readl i nk 2.7 90.2 87.5 33.0
create_tag 22.6

change_l abel 55.0

fl unenul | 20.1

IPC round trip latency 4.1 33.8 290.8 8.2
IPC bandwidth 2945 937 2008 3.1

Figure 9-1: System call and IPC microbenchmarks, and Flweehead as a multiplier. Laten-
cies are irnus and bandwidth is in MB/sec. System calls were repeatedQQites, IPC round
trips were repeated one million times, and IPC bandwidth nvaasured over a 20GB transfer;
these results are averages.

version 2.6.17 with and without Flume is a dual CPU, duabBGHz Xeon 5140 with 4GB of
memory. The Web server is Apache 1.3.34 running MoinMoinBlndheWiki as frozen Python
CGl programs. The Web load generator is a 3GHz Xeon with 2@Beshory running FreeBSD
5.4.

For most system calls, Flume adds 35—-28@er system call which results in latency over-
head of a factor of 4-35. The Flume overhead includes additii®’C, RPC marshalling, ad-
ditional system calls for extended attributes and extrapmdation for security checks. The
additional cost of IPC and RPC marshalling is shown byfthenmenul | latency, which re-
ports the latency for a no-op RPC call into the reference too(iRM). Most Flume system calls
consist of two RPCs, one from the client application into t&ference monitor and one from
the reference monitor to a file server, so the RPC overheawuatsfor approximately 46 of
Flume’s additional latency. As an optimization on publie filystems, the RM handlepen
andst at calls inline rather than querying a file server and thus avaidecond RPC. Calls like
creat et ag andchange_l abel also use a single RPC into the RM aabose for files
does not contact the RM at all. For non-public file systempen on a non-existent file requires
the RM to walk down the file system to determine what error mgsdgo return to the client, so
this operation is particularly expensive. This check igdag a public file system (where all
files are readable to everyone), because the RM need not heafiarent directories.

Flume also adds overhead to IPC communication becausexiepr®C between processes.

107

The base case in our measurements is an IPC rounctwpites tog, ¢ readsg writes top, and
thenp reads. This exchange amounts to four system calls in totatandard Linux. The RM’s
proxying of IPC adds eight system calls to this exchanger: dalls tosel ect , twor eads and
twowr i t es. Thus, an IPC round trip takes 12 system calls on Flumerringuthe three-fold
performance penalty for additional system calls seen inbB@width. As withf | urenul |
computation and context switching in Flume add additioatnicy overhead, summing to the
eight-fold latency degradation seen in Figure 9-1.

9.3 Flume Overhead

To evaluate the system level performance overhead of Flureesompare the throughput and
latency of pages served by an unmodified MoinMoin wiki and ymeWiki.

In the read experiments, a load generator randomly reqpagess from a pool of 200 wiki
pages; the pages are approximately 9 KB each. In the writerempnts, each write request
contains a 40 byte modification to one of the pages for whietstdrver responds with an 9 KB
page. In all experiments, the request is from a wiki user, vghlmgged in using an HTTP
cookie. For the latency results, we report the latency wittingle concurrent client. For the
throughput results, we adjusted the number of concurr@nitslto maximize throughput. Figure
9-2 summarizes the results.

FlumeWiki is 43% slower than MoinMoin in read throughput%a4lower in write through-
put and it adds a latency overhead of roughly 40ms. For baitesys, the bottleneck is the
CPU. MoinMoin spends most of its time interpreting Pythod &tumeWiki has the additional
system-call and IPC overhead of Flume.

Most of FlumeWiki’'s additional cost comes from callsapen andst at when Python is
opening modules. For each page read request, the RM ser8esy3tem calls including 487
opens and 186st at s. Of the calls tapen, 18 are for existing non-public files, 73 are for
existing public files, 16 are for non-existent non-publiedibnd 380 are for non-existent public
files. Of thest at s, 156 are for public files and 30 are for non-public files. Bhealls sum to
28ms of overhead per request, which accounts for much ofdhes lifference in read latency.
FlumeWiki also incurs an extrfaor k andexec to spawnwiki.py as well as extra system calls
on each request to setup labels, pipes and filters.

The numbers reported in Figure 9-2 refléeizen Python packages, both in the case of
FlumeWiki and MoinMoin. Frozen Python packages store maythdh packages in one file,
and in the case of FlumeWiki reduce the combined numbepein andst at calls from more
1900 to fewer than 700. Frozen packages especially benefiidWiki’'s performance, since its
system call overhead is higher than standard Moin’s.

9.4 Cluster Performance

Despite Flume’s slowdown, FlumeWiki may be fast enoughaalyefor many small wiki ap-
plications. The Flume implementation could be optimizedhier, but Flume’s support for a

108

Throughput (reg/sec) Latency (ms/req)

‘ MoinMoin FlumeWiki | MoinMoin FlumeWiki
Read 33.2 18.8 117 156
Write 16.9 11.1 237 278

Figure 9-2: Latency and throughput for FlumeWiki and unrfiedi MoinMoin averaged over
10,000 requests.

centralized tag registry and FS file sharing supports ansthetegy for improving performance,

namely clustering. We tested scalability on a "virtual” stler, running the FlumeWiki read

throughput experiment on the same server hardware, butanittrying number of single CPU

virtual machines on top of a single Linux-based virtual maemonitor. Each virtual machine

is limited to a single hardware CPU, and within each virtualkhine, we ran Flume on a guest
Linux OS.

In this experiment, FlumeWiki stores shared data inclugiages and user profiles in an NFS
file system and all other data is duplicated on each VM's peidisk. The NFS file system and
the tag registry are both served by the host machine. WithglesVM (i.e., a 1-node cluster),
throughput was 4.3 requests per second. Throughput soadesly to an aggregate of 15.5 re-
guests per second in the case of four VMs (i.e., a 4-nodeet)ysthich is the maximum number
of CPUs on our available hardware. This cluster configunagichieves lower throughput than
the single-machine configuration (18.8 reqg/sec) becaus@iohnd NFS overhead.

9.5 Discussion

Although FlumeWiki’s cluster performance may already beasle for some services, one di-
rection for future performance improvements is to modifyrR€Wiki to run as a FastCGl service
which amortizes a CGI process’s startup cost over multigtpiests. Benchmarks posted on the
MoinMoin site [99] show a tenfold performance improvemerten running MoinMoin as a
FastCGl application [26] rather than a standalone CGI (asiimbenchmarks) and FlumeWiki
could benefit from a similar architecture. One approach é&nalate Asbestos’s event processes:
keep one Python instance running for eéshi, O) combination of labels currently active, and
route requests to instances based on labels. Similarlyinplvikilaunch into the web server
would avoid & or k andexec per incoming request.

Chapter 10

Discussion, Future Work and
Conclusions

The thesis has made the case—via Flume—that DIFC’s adwestzan be brought to bear on
standard operating systems and applications. Using Flupregtammer can provide strong
security for Unix applications, even if parts of the appiica contain bugs that are exploitable
on a non-DIFC system. In this final chapter, we examine thenElapproach, asking questions
such as: Is it really secure? Is it general? Is its complexéigessary? Is it solving a problem
that actually matters? Reflecting upon general experienitte Flume, and contrasting with

experience on the Asbestos project (of which | am a proud neemtve speculate on research
directions for the future.

10.1 Programmability

MAC systems have a reputation for being difficult to prograhtypical sticking point islabel
creep all security labels monotonically increase, until no @se on the system can perform
a useful task [89]. The newer wave of statically-checkedesys with decentralized informa-
tion flow control (e.g., Jif) solve some of these problemsibtroduce new ones: they require
security type annotations on variables and methods, ameftiie increase the amount of think-
ing and typing that programmers must do; moreover, they ddmzany programs and libraries
be deeply modified [44]. Asbestos and HiStar also eliminalell creep with decentralization
of privilege, and without type-annotation overhead. Buhb@quire the system developers to
maintain a new software stack (especially in Asbestos) aptication programmers to learn a
new programming model.

Does Flume improve programmability? Like Jif, Asbestos Hlifstar, Flume offers decen-
tralization of privilege, to combat label creep. But relatio those systems, Flume has better
support for legacy software, legacy platforms, and tocds gnogrammers typically use. In this
sense, using a Flume-enabled machine is less of a “respeotitype” experience, and simi-
lar to using the underlying operating system (i.e., Linuitconfined processes like standard

109

110

1 inport flune.flunos as flnos

2 inport flume

4 t = flnos. createtag (fl unme. TAG.OPT_DEFAULT_ADD, "Alice")
5 fl nos. change_label (fl une. LABEL.O, fl nos. Label ())

6 f = open ("/tnp/alice.dat", "w')

7 flnos. change_label (flune. LABEL.S, flnos.Label ([t]))

Figure 10-1: An example of Python code that fails under Fludu® to violation of endpoint
label safety.

Traceback (nmost recent call last):
File "<stdin>", line 1, in <nmodul e>
File "python2.5/site-packages/flune/flnos. py", |ine 960, in set_l abel
rai seerr ("set_label failed")
File "python2.5/site-packages/flune/flnmos.py", line 38, in raiseerr

rai se flune. PermissionError, s

flume. Perm ssionError: "set_ abel failed; check_.add_sub_all failure;

coul d not subtract all of [0x53e5f900ec160c9] with an ownership

| abel of []

Check endpoint label (S) failed for EP "/tnp/alice.dat [rw] :

don’t have all capabilities for difference |abel

[0x53e5f 900ec160c9] where this EP | abel is []

and the process’s |label is [0x53e5f900ec160c9]

In set process. abel (| abel typet = LABEL_S;, [0x53e5f900ec160c9])"

Figure 10-2: The error message that the code in Figure 1@dupes.

daemons start up as normal; patches, upgrades, shellshdéws, and even proprietary binary
software work as before.

Of course the real question is: what is the programmer esipegi when developing, testing,
debugging, and running confined code, or unconfined codectilatupon the Flume API. A
programmability improvement relative to a system like Astbe are the details conveyed in er-
ror messages resulting from system call failures. Many itamb Asbestos system calls (those
derived fromsys_send) cannot report errors at all for fear of information leakabkl changes
silently fail, as do message sends to other processes, latoefeannot solve all of these prob-
lems, but in an important set of cases, it can.

Consider the actual Python program shown in Figure 10-1e Hbee program creates a new
export-protection tagin line 4, discards the capability in line 5, opens a writable file (whose
labels default toS = I = {}) in line 6, then attempts to raise its process labebte- {t} in
line 7. The label change in line 7 fails, because the writaiblenutable endpoint on the file
opened in line 6 has labél = {}, which is no longer safe. Flume can give a detailed error
message at the site of the failed system call, as shown inrd-it+2. The error explains the
exact label, capability and endpoint configuration thatsealuthe failure. The data conveyed

111

here is rich enough for a good programmer to get a sense oftivaaiug is. For those of lesser
abilities, this messages will admittedly be vexing (andiclift to Google). The same error crops
up in other cases, such as processes failing to change labmdschange would cut off IPC or
signal retrieval. With endpoints, the report of the bug leyspas close to the bug as possible.
This experience contrasts markedly with application dgwaslent on Asbestos, in which many
errors were unreported and only manifested themselves tatertin the program.

Another improvement in Flume (and HiStar) over Asbestoois{tontrolled IPC, as in stan-
dard Unix pipes and socketpairs. In Asbestos, communitdteiween processes happens via
unreliable messageg.sends ta; without knowing how fast to send, or whethgreceived the
message, much like in UDP. Future Asbestos developmend pkdhfor reliable communication
in a user-level library (like a TCP over UDP implementatiob)it such a facility did not exist
when we were building Asbestos applications. In Flume, gwumption is that bidirectional
flow-controlled communication is norm, and for this reasemgpoints allow two processes with
different labels and sufficient privileges to act as if tHalvels are equal. Relative to our de-
velopment experience with unreliable communication in&stbs, our experience with reliable
communication in Flume is extremely positive. Occasionsrétiable communication abound
in the MoinMoin Wiki example: between the the Web server dmlauncher, the launcher and
the application, and application and the file system, thedher and the user manager, etc. To
establish the same communications with unreliable messageld be tedious and error-prone.
Though Flume processes with uneven labels can communioegéiably, we have never found
a need for this feature.

Flume has room for improvement. For instance, it ought tdément better tracking of open
files, so that a process can close a final reference to a filerapdloe corresponding endpoint.
Certain certain programming tasks under Flume have proifécult, such as implementing Web
services with thdlume_fork rather than thespawn primitive (c.f., Sections 7.2.1 and 7.2.2).
Many bugs surrounded the closing and reopening all file gescs (including standard er-
ror!) on either side of the call to Linux’sor k. These implementation challenges prevented
the measurement diume_fork for this thesis, but preliminary results shows that perfamae
improvements relative tepawn are substantial (on the order of 10x).

Debugging in general remains rudimentary. Most debugging happens via print state-
ment sent to standard error. Sometimes bugs require rilaxat information flow control
rules, so that confined processes can still output erroragessto the administrator (us), again
via standard error. In the future, these debugging statensfould flow through dedicated de-
bugging devices, one pé6, I)-label combination. The problem becomes more complicated i
the scenarios described below in Section 10.5, in whichldpees should not have access to
debugging output, since their code is running over datattiegt are not authorized to see.

10.2 Security Compartment Granularity

A primary difference between language-level DIFC (e.d),ald OS-level DIFC (e.g., Flume)
is the size of security compartments. In the former, theylmas small as a bit; in the latter,
they can be no smaller than a thread (in HiStar) or procedslime). The MoinMoin applica-

112

tion, and for that matter most CGl and FastCGl-based agmits can work with process-level
label granularity. But some modern applications demand frenularity, like Web application
servers (e.g., JBoss [82]) and relational databases fogtgreSQL [76]). Such applications
can find convenient expression in Jif, but on Flume wouldegitieed privilege for many tags,
or operate at a very high (and therefore useless) secreely lev

Perhaps a good general solution is a hybrid approach. Gam$id example, an implemen-
tation of FlumeWiki with a database backend. The databasebeanritten with Jif, meaning
information flow rules control movement of labeled datadedihe process’s address space, with
declassification and endorsement occurring at a few ishlatésileged functions. From Flume’s
perspective, the database runs as a highly privileged coemppwith access tq,~ for all w. But
the administrator relies on Jif's guarantees to reassuseli¢hat the database uses those privi-
leges responsibly. If the declassifiers and Jif’s implemigon are correct, she is not vulnerable
to bugs in the large remainder of the database code. Thefrd® system—wikilaunch and
wiki.py—operate as previously described, with one label per addgsce.

10.3 Maintenance and Internals

We built Flume with an eye toward ease of future maintenakeeping most code in application
space. Some important maintenance tasks remain. The m@siusnin our experience is up-
dating Flume’s patch to the Linux kernel (c.f., Section X)2since even minor kernel revisions
can break the patch. Flume also demands a patgh bbc andl d. so, but this software has
stayed much more stable over our two years maintaining Flume

Some internal aspects of Flume’s implementation provetigr than we would have liked,
such as ofvai t andexi t . The state machine for this aspect of Unix is complex to begih,
but message delivery constraints induced by DIFC add fudbmaplexity. For instance, a parent
p at secrecyS, = {} gets an exit signal from a childat S. = {¢} not whenc actually exits,
but rather wherz changes its label. Many similar corner cases complicaténtipiementation
and internal garbage collection of per-process resouflss, in retrospect, factoring the Flume
file servers into independent processes added extra imptatite, debugging and performance
overhead. Though it feels like the correct design decigiaieims of privilege separation [91],
future revisions of Flume’s might fold these operationgdity into the reference monitor.

10.4 Threat Model

A big question to consider when evaluating Flume or systékastl is what is thehreat model
who is attacking the system, how do they attack it, and wheatregir goals? The easiest threat to
protect against are those introduced by well-intentiongdtareless programmers, like the ACL-
bypass vulnerabilities we noted in MoinMoin Wiki. Programmbugs become more virulent
when they allow arbitrary code execution (like a buffer ouarin C, a call tosyst emwith
unescaped data in Perl, or a SQL injection attack); an admemsho exploits such a bug can
control the Web server and the data it has access to. Evendifficalt to defend against is an

113

adversary who isnvited to run his code on the server or with access to sensitive aii (@s
in Facebook’s application platform). In general, if a systetends to defend against a more
severe attack, it must make a greater upheaval to longs@ogierating system or programming
techniques. We examine some of these trade-offs in the xtootd-lume and other ideas for
Web security.

10.4.1 Programmer Bugs That Do Not Allow Arbitrary Code Exeaition

To protect only against bugs like the ACL-bypass vulnerads in MoinMoin, a system simpler
than Flume might suffice. To secure MoinMoin, one can imagdingding Flume’s file 1/0O
checks into a Python library. Whenever MoinMoin writes a fdedisk, the library updates an
application-level label on the file. Whenever MoinMoin readfile from disk, the library reads
in the label, and updates the label on the process. When Mmimbutputs to the network, it
tells thewikilaunch process what it thinks its label is, amdkilaunch applies the same sort of
policies as in FlumeWiki. A more powerful technique is toldwdgimilar behavior into run-time
interpreter. For instance, Perl introducethant facility years ago, which categorizes data into
one of two integrity categories, and updates integrity lglas data flows through the run-time
interpreter [8]. An expansion of this technique to coveragatized labels, file I/O and IPC might
be useful in securing Perl-specific Web applications.

Relative to Flume, the library and interpreter techniquagelhseveral practical advantages.
First, they are likely easier to implement; second, theyliaedy easier to program with; third
they are more portable; and fourth they are likely incur digdge performance penalty. These
techniques would protect programmers against their owrs,bsig long as those bugs do not
allow arbitrary code to execute and disable the applicatiself-checking mechanism. Such an
assumption would not hold for a language like C (prone todsudiverruns) or if the attacker
could fork a new process that reads data files directly offfileesystem (and not through the
tracking library).

These techniques also do not apply to systems composed of different language tech-
nologies stitched together. For instance, large Web sitea consist of many components, built
by many engineers with differing tastes, and therefore iftipie languages. Sometimes these
sites require compiled C code when performance mattersr tithes, scripting languages suf-
fice for rapid prototyping; and system administrators migtefer shell-scripting and pipelines
while accessing sensitive site data. These circumstaegede security controls at the common
interface, which on many Unix systems is the system-cadirfate.

10.4.2 Virulent Programmer Bugs

Security becomes more complicated if programmers wish atept themselves against more
virulent bugs that allow arbitrary code execution, or ifitiésh to build a system out of multiple
languages. Defense in this context leads to a system likadslthat enforces security controls
at the system-call level. This approach has several impa@dvantages; security controls (1)
cannot be disabled by a compromised application; (2) aréaélato all programs regardless of
language; (3) can cover IPC and file 1/O in all cases.

114

Covert channelemerge as a key complication in this threat model. A coveahoRl is
means of inter-process communication not explicitly meddland therefore, not controlled).
However, to exploit such a channel, an attacker must coatrddast two code paths on the
system: one to encode and send the information and anotdectale and receive it. Typically
such communication is difficult or impossible without gealecontrol of one or more server
processes (such as the attack in Section 3.4). Thus, cdaarhels are assumed not possible in
Section 10.4.1 but become possible in the presence of maieni programmer bugs.

A covert channel on Flume, for instance,pisnonopolizing CPU (or sitting idle) while
gueries the CPU load (perhaps by measuring latency betwearsiructions).p can encode a
“1” as CPU monopolization and &" as quiescence. Of course, Flume does not capture the
notion of CPU scarcity, or that the CPU is shared among altgsses. Therefore it neither
models this channel nor provably prevents it. In generagmwelver two processesandq share a
physical resource, they can communicate in this manneiowRess include: cache lines on the
CPU, memory, memory bus bandwidth, hard disk space, hakddiss, network bandwidth, etc.
Flume does not protect against these covert channels, nothdo DIFC kernels like Asbestos
and HiStar (though HiStar solves some resource-exhaustiannels).

The key issue to consider about covert channels is how fagtlgak information, and how
observable those leaks are. One can imagine that on a Fluctgrmaavith only two active pro-
cessesy{ andq), p can encode many bits as disk or cache access patterns, ang rediably
observe them. However, machines in Web-based clusteryoalty busy, with many active
processes vying for control of the machine’s resourcesud¢h an environment, the covert chan-
nel betweerp andq becomes much noisier, and therefore, the rate of informatansmission
between them must drop. Without having any real experiertteasvert channels on real sys-
tem, we conjecture that long-running covert channel atédle to noisy and slow channels) are
likely to be noticed by site administrators in well-managedver environment. However, more
experiments on real systems, under real workloads are deedgiantify these threats.

A final point about covert channels is that they are more caratgd and far less convenient
than theovertchannels typically used to leak data from Web systems. &rsttise, even a system
like Flume that is susceptible to covert channels offershetsuntial security improvement over
the status quo.

10.4.3 Invited Malicious Code

The most difficult attack to defend against is the malwaracéttin which the administrator
actively invites malicious code onto the server and alloiv® icompute over sensitive data.
Here, the adversary can run many processes, and pound or cbaanels without raising an
eyebrow. As discussed below, we believe that a Flume systisgeptible to these attacks (and
others) is still more secure than the Facebook-like archites in use today.

115

10.5 Generality and Future Directions

MoinMoin Wiki is a compelling target application for Flumeelto its generality. Wikis support
file creation, link creation among files, namespace managgraecess control right manage-
ment, version control, indexing, etc. In other words, wik@ be thought of as general file-
systems with user-friendly interfaces, building blocks fisany features available on the Web
today. In this sense, theikilaunch application might be more general than just MoinMoin Wiki
application, and apply to other applications (like Phdtaring, blogs or social-networking) with
small modifications. The hope, eventually, is for an adniiater to run a suite of interesting
Web applications using only ongikilaunch declassifier, keeping his TCB fixed while expand-
ing to new features.

One perspective on Web platforms like Facebook and OpealSsdhat they are general-
izations of wikis. Like a wiki, Facebook allows users to wldiles, images, movies and docu-
ments; it allows groups of users to contribute to the samemeat, say by all adding captions
to the same picture; it also features access control pslia®re powerful than MoinMoin’s in
some cases (such as “friend-of-a-friend” permissions)a dbnceptual level, third-party Face-
book applications are reminiscent of third-party MoinMgiig-ins. In both cases, the plug-in
code has access to the important underlying data; thereife@eedces, though, such as where
does the code actually run (on the same server as the mainajgsi or on a third-party server),
who can add new modules, who can use new modules, etc.

One idea for reinventing extensible Web platforms, whichoat “W5,” is to implement
them as generalized wikis: to allow contributors to uploathbcontent and code [59]. W5's
design follows from our current implementation of FlumeWikhe wikilaunch script remains
the important declassifier, but the wiki softwavaKi.py) itself is replaced by arbitrary uploaded
code. Even if uploaded code is malicious, it is still subjecDIFC rules. Therefore, users
of the W5 system can experiment with new uploaded applicatigithout fear of losing their
data. Similar policies pertain to integrity protection:ohigh-integrity application code can
overwrite high-integrity data stored on the W5 server. Rajon of code authors or editorial
oversight can establish which pieces of the system get aihtghrity certification.

W5 presents challenges that Flume does not yet meet. Asanedtpreviously, some covert
channels unclosed in Flume can allow information leaks. Wistnprevent against resource-
exhaustion: attacks by malicious code meant to prevent godé from doing useful work.
Web sites more general than MoinMoin might require a dawlieskend that stores data in
individually labeled rows. Several of these problems halated solutions in the literature:
Google’s App Engine [39], Amazon Web Services [1], and vasiwirtual machine approaches
provide means of isolation among mutually distrustful coslules written by different authors.
The SeaView database applies traditional MAC rules [63]d An a busy Web-server with many
applications contending for resources, covert channalsdan resource exhaustion might prove
noisy and therefore slow.

W5 must also address browser-based attacks. For instamaginie Charlie uploads a third-
party application to W5, which Alice later uses. Charliggpkcation reads Alice’s secrets from
the file system, and due to the policy enforcedvtikilaunch, cannot send that data back to

116

Charlie’s browser. However, Charlie’s code can send Adidsta to Alice’s browser and then
ask Alice’s browser to send that data to Charlie’s serven ifstance, it could send HTML
Alice, instructing her browser to load the imaugget p: / / char | i e. cont s,wheres is Alice’s
secret. Charlie can then monitor the access logsioer | i e. comto recovers. Charlie can
also use JavaScript or Ajax calls to achieve the same endsli€has other attack possibilities:
he can instruct Alice’s browser to post her secret data batket W5 site, but to a public forum.
Or he can disrupt the integrity of Alice’s data, by instragtiher browser to overwrite her high-
integrity server-side data.

The solution to these browser-based attacks is to considéteb browser as part of the Web
system, and to track information flow between the server dirdtc That is, Alice’s browser
runs with a secrecy and integrity label, ensuring that dateament from the W5 site, to Alice’s
browser and back to the W5 site obeys all of the same DIFC aliteady present on the server.
The Swift work achieves some of these properties, but undeassumption that the site user
(e.g., Alice) and not the programmer (e.g., Charlie) is amalis [12]. W5 needs to employ
either similar language-based approaches, or perhapséraonodifications to enable dataflow
tracking. As it does so, it might be providing general salng for XSS and XSRF attacks.

10.6 Conclusion

When researchers laid the groundwork for computer seciritiie sixties and seventies, they
experimented with several styles of access controls, ssidisaretionary access control lists, or
more military-style mandatory access control. As the P@ togprominence in the eighties, it
forced users and developers down the discretionary patar{wking access control at all). The
problem is that the discretionary style of access contrelsdmt work against modern threats:
the prevalence of malware and the deteriorating state of &&ebrity have proven so.

With Flume, this thesis aims to show that information flonckiag can work on popular
systems, and that DIFC offers a strong solution to otherimigsactable security problems. With
Web technologies maturing and aiming to be center stagdéonéxt phase in computing, now
is the perfect time to set developers on the right accessetdrajectory. To this end, we hope
that DIFC can transcend academic research and secure fo&imstream computing systems.

Appendix A

More on Non-Interference

A.1 Unwinding Lemma

Ryan and Schneider [88] allude to an “unwinding” result fonfinterference, which states that
if a CSP process$’ shows a non-interference property for each of its states) thshows the
same property over all traces [87]. Unfortunately, besirésfto recover the publication, whether
in paper or electronic form, have failed. We recreate a pobdlie “easy” half of the unwinding
result here, though the proof of Flume’s non-interferenoeschot require it.

Lemmal. If Va,da’ € traceqS) such thau ~, o
1. initials(S/a) N L = initials(S/a’) N L
2. refusalgS/a) | L = refusalgS/a’) | L
thenvb, b’ € traceqS) such thab ~; b': SF[S/b] | L = SF[S/V] | L

In other words, if we can prove that after two equivalentésas still accepts and rejects the
same events, thesi exhibits non-interference.

Proof We show the equality of the two failure sets by proving eacimétuded in the other.
Take an arbitraryf € SF[S/b] | L. The goal is to prove that € SF[S/V'] | L. Write
f = (¢, X). Thus, there exists somg = (¢, X’) suchthatt = ¢ | L, X = X'Nn L and
1" € SF[S/b], by definition of projection over failures.

First consider the set of refused events Since(c’, X') € SF[S/b], it follows that X’
refusalg.S/(b "~ ¢)), and applying projections to both side§, N L € refusalgS/(b "~ ¢')) | L,
or equivalently, X € refusalgS/(b ™ ¢/)) | L. By assumption) ~;, b'. By definition ofc and
c, we also have that ~;, c. Thus, their concatenations are also equivalent whengisgjeover
L. Thatis,(b™ ¢) =~ (t/ " ¢). Thus,X € refusalgS/(V' " ¢)) | L, sincerefusalgS/ (V' ™ ¢))
=refusalg.S/(b ™ ') by our assumption.

117

118

Next, consider the trace portion ¢f, denoted”. (¢, X) € SF[S/b] implies thath ™ ¢’ €
traceq.S). Our goal is to show that € traceg.S/b') | L. Write the trace’’ in terms of a
sequence of events:

d = {er,ea,...,en)

For eachi, we have thae; € initials(S/(b ™ (e1,...,ei—1))) by definition. Ife; € L, then it
follows thate; € initials(S/(b ™ (e1,...,e;—1))) N L. Using the same logic as abovesy;, b’
implies that(b ™ (e1,...,e;—1)) = (t/ ™ (e1,...,e;—1)), and hence:

initials (S/(b " (e, ..., e;_1))) N L = initials (S/(6 ™ (ex,...,ei_1))) N L

by our assumption. Thus, if; € L, thene; € initials(S/(Y' ™ (e1,...,ei—1))) N L. Take
the maximali such thate; € L, and call iti*. By the definition of traces, it follows that:
(e1,...,eix) € traceqS/V’). And also, since the sequengs, . .., e;«) includes all events from
¢, we have thatey, ..., e;«) | L = ¢, which shows that € traceg.S/b').

Thus, f € SF[S/V] | L, and consequentlsF[S/b] | L € SF[S/V] | L. The other
inclusion follows by symmetry

Bibliography

[1] Amazon. Amazon Web Servicebt t p: / / aws. amazon. com

[2] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-DusseauhbiaiC. Burnett, Timothy E.

Denehy, Thomas J. Engle, Haryadi S. Gunawi, James A. Nugedti-lorentina I.
Popovici. Transforming policies into mechanisms with kdmel. InProceedings
of19th ACM Symposium on Operating Systems Pringipiages 90-105, Bolton
Landing, Lake George, New York, October 2003.

[3] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wa@leris Wright, and Adam

[4]

[5]

[6]

[7]

[8]

[9]

Shostack. Timing the application of security patches fdmogl uptime. InProceedings
of Sixteenth Systems Administrator Conference (LIBé&ikeley, CA, 2002.

D. Elliott Bell and Leonard J. LaPadula. Secure compstatems: Mathematical
foundations. Technical Report Technical Report 2547, Malu, MITRE Corparation,
Bedford, MA, March 1973.

D. Elliott Bell and Leonard J. LaPadula. Secure compagetem: Unified exposition
and multics interpretation. Technical Report MTR-2997y.He MITRE Corparation,
Bedford, MA, March 1976.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keyingshaunctions for message
authentication. IfProceedings of the 16th Annual International Cryptologynfeoence
on Advances in Cryptology (CRYPT®ages 1-15, August 1996.

K. J. Biba. Integrity considerations for secure comptgstems. Technical Report
MTR-3153, Rev. 1, MITRE Corp., Bedford, MA, 1976.

Gunther Birznieks. CGI/Perl Taint Mode FAQ, 1998.
http://gunt her. web66. com FAQS/ t ai nt node. htm .

Micah Brodsky, Petros Efstathopoulos, Frans Kaashieklje Kohler, Maxwell Krohn,
David Maziéres, Robert Morris, Steve VanDeBogart, andkateler Yip. Toward secure
services from untrusted developers. Technical Report 0&2041, MIT CSAIL,
August 2007.

119

120

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

CERT. Advisory CA-2000-02: malicious HTML tags embeddn client web requests,
2000.htt p: // www. cert. org/ advi sori es/ CA-2000-02. ht m .

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. VikraLantian Zheng, and Xin
Zheng. Secure Web applications via automatic partitioning’roceedings of 20th ACM
Symposium on Operating Systems Princip&svenson, WA, October 2007.

Steven Chong, K. Vikram, and Andrew C. Myers. SIF: Enfog confidentiality and
integrity in Web applications. IRroceedings of 16th USENIX Security Symposium
Boston, MA, August 2007.

Neil Chou, Robert Ledesma, Yuka Teraguchi, Dan Bonet,John C. Mitchell.
Client-side defense against web-based identity thefRrateedings of the 11th Annual
Network and Distributed System Security Symposium (NZ38)Diego, CA, 2004.

C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. BeateGrier, P. Wagle, and
Q. Zhang. StackGuard: Automatic detection and preventidoufier-overflow attacks.
In Proceedings of11th USENIX Securi§an Francisco, California, August 2002.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simglifaga processing on large
clusters. InProceedings of 6th Symposium on Operating Systems Design an
Implementation (OSD))December 2004.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampania@udhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan SivasubraemarPeter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-eadtiore. InProceedings of
20th ACM Symposium on Operating Systems Pringij@és/enson, WA, October 2007.

Dorothy E. Denning. A lattice model of secure infornaatiflow. Communications of the
ACM, 19(5):236—-243, May 1976.

Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why piniglworks. InProceedings
ofthe SIGCHI Conference on Human Factors in Computing 8ysteages 581-590,
2006.

T. Dierks and E. Rescorla. The transport layer secitiity protocol, version 1.1.
Technical report, Network Working Group, April 2006.

Chad R. Dougherty. Vulnerability note VU #80013: Mplgé DNS implementations
vulnerable to cache poisoning. Technical report, UnitedeStComputer Emergency
Readiness Team, July 2008t t p: / / www. kb. cert. org/vul s/i d/ 800113.

Petros Efstathopoulos, Maxwell Krohn, Steve VanDe&@tdCliff Frey, David Ziegler,
Eddie Kohler, David Mazieres, Frans Kaashoek, and Robertis! Labels and event
processes in the Asbestos operating systenPraceedings of 20th ACM Symposium on
Operating Systems PrincipleBrighton, UK, October 2005.

121

[22] David Endler. The evolution of cross site scriptingaakts. Technical report, IDEFENSE
Labs, 2002.

[23] Dawson R. Engler, M. Frans Kaashoek, and James O'T@lekernel: An operating
system architecture for application-level resource mamet. InProceedings of15th
ACM Symposium on Operating Systems Princigbeges 251-266, Copper Mountain
Resort, Colorado, December 1995.

[24] Facebook. Facebook developers wiki.
http://w ki.devel opers. facebook. conli ndex. php/ API .

[25] Facebook.comhtt p://wwv. f acebook. com
[26] Open Markethtt p: //wwv. f astcgi . com

[27] Justin Fielding. UN website is defaced via SQL injentidech RepublicAugust 2007.
http://bl ogs.techrepublic.comcom networki ng/ ?p=312.

[28] FIPS 180-1.Secure Hash Standard).S. Department of Commerce/N.l.S.T., National
Technical Information Service, Springfield, VA, April 1995

[29] FIPS 180-2.Secure Hash Standardl.S. Department of Commerce/N.1.S.T., National
Technical Information Service, Springfield, VA, August 200

[30] Django Software Foundation. Django.

[31] Timothy Fraser. LOMAC: Low water-mark integrity prat#on for COTS environments.
In Proceedings 0f2000 IEEE Symposium on Security and Priyages 230-245,
Oakland, CA, May 2000.

[32] Timothy Fraser, Lee Badger, and Mark Feldman. Hardg@i®TS software with
generic software wrappers. Rroceedings ofEEE Symposium on Security and Privacy
Oakland, CA, May 1999.

[33] Stefan Frei, Thomas Dubendorfer, Gunter Ollmann, iadtin May. Understanding the
Web browser threat: Examination of vulnerable online Weiwsier populations and the
"insecurity iceberg”. Technical Report 288, ETH Zurichndary 2008.

[34] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostiadedegating architecture for
secure system call interposition. Rtoceedings of the 11th Annual Network and
Distributed System Security Symposium (NDS&h Diego, CA, 2004.

[35] Jacques Gelinas. Virtual private servers and secadtyexts, January 2003.
http://1inux-vserver.org.

[36] J. A. Goguen and J. Meseguer. Security policies andrggenodels. INIEEE
Symposium on Research in Security and Priya®&g2.

122

[37] R. P. Goldberg. Architecture of virtual machines.RAroceedings of the workshop on
virtual computer systempages 74-112, 1973.

[38] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.wo construct random
functions. Journal of the ACM33(4):210-217, 1986.

[39] Google. Google App Enginént t p: / / code. googl e. conl appengi ne.
[40] Google.com. Opensociaht t p: / / code. googl e. cont api s/ opensoci al /.

[41] Andy Greenberg. Google’s opensocial could invite bieuForbes.comNovember 14
2007.htt p: // ww. f or bes. com 2007/ 11/ 13/
open- soci al - googl e-tech-i nfrastructure-cxag_1114open. htm .

[42] William G.J. Halfond, Jeremy Viegas, and AlessandredIA classification of
sql-injection attacks and countermeasuresPrmceedings of the IEEE International
Symposium on Secure Software Engineerfgngton, VA, USA, March 2006.

[43] Norman Hardy. The confused deputy: (or why capabditiéght have been invented).
22(4), October 1988.

[44] Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McBAnlUnderstanding practical
application development in security-typed languages?rbteedings of22st Annual
Computer Security Applications Conference (ACSAGami, FI, December 2006.

[45] Boniface Hicks, Sandra Rueda, Trent Jaeger, and RaitaDaniel. Integrating selinux
with security-typed languages. Rroceedings of the 3rd SELinux Sympositarch
2007.

[46] C. A. R. Hoare.Communicating Sequential ProcessBsentice/Hall International,
Englewood Cliffs, New Jersey, 1985.

[47] A.Householder, K. Houle, and C. Dougherty. Computéack trends challenge Internet

security. Computer 35(4):5-7, Apr 2002.

[48] Jeremy Jacob. On the derivation of secure componem®rolceedings of the IEEE
Symposium on Security and Priva®akland, CA, 1989.

[49] Michael B. Jones. Interposition agents: Transpayanterposing user code at the
system interface. IRroceedings of14th Symposium on Operating Systems Heacip
(SOSP)Asheville, NC, December 1993.

[50] Nenad Jovanovic, Engin Kirda, and Christopher Krue§ekventing cross site request
forgery attacks. INEEE International Conference on Security and Privacy in
Communication Networks (SecureCompgges 1-10, September 2006.

123

[51] Poul-Henning Kamp and Robert N. M. Watson. Jails: Con§rihe omnipotent root. In
Proceedings of 2nd International System Administratiod Hetwroking Conference
(SANE) Maastricht, NL, May 2000.

[52] Gregg Keizer. FAQ: The monster.com mess, August 2007.
http://ww. conput erwor | d. conf acti on/
article.do?command=vi ewArticl eBasi c&articl el d=9032518.

[53] Key Logic. The KeyKOS/KeySAFE System Desgat009-01 edition, March 1989.
http://ww. agori cs. coni Li brary/ KeyKos/ keysaf e/ Keysaf e. ht m .

[54] Engin Kirda, Christopher Kruegel, Giovanni Vigna, addnad Jovanovic. Noxes: A
client-side solution for mitigating cross site scriptirttpaks. InProceedings of the 21st
ACM Symposium on Applied Computing, Security Tragkil 2006.

[55] Vladimir Kiriansky, Derek Bruening, and Saman Amaragie. Secure execution via
program shepherding. Iroceedings of 11th USENIX Securifugust 2002.

[56] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, RsaKaashoek, Eddie Kohler, David
Mazieres, Robert Morris, Michelle Osborne, Steve VanDgdBg and David Ziegler.
Make least privilege a right (not a privilege). Rroceedings of 10th Hot Topics in
Operating Systems Symposium (HotOSSénta Fe, New Mexico, June 2005.

[57] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Egecan make sense. In
Proceedings of 2007 USENIX Annual Technical Confere8aata Clara, CA, June 2007.

[58] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan @dr, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information flow controt &iandard OS abstractions.
In Proceedings of the 21st Symposium on Operating Systemdtes (SOSR)
Stevenson, WA, October 2007.

[59] Maxwell Krohn, Alexander Yip, Micah Brodsky, Robert Mts, and Michael Walfish. A
World Wide Web Without Walls. IfProceedings of the 6th ACM Workshop on Hot
Topics in Networks (HotNetsAtlanta, GA, November 2007.

[60] Robert Lemos. Payroll site closes on security worr@set News.con-ebruary 2005.
http://news. com conf 2102- 1029 _3- 5587859. ht m .

[61] Peng Liand Steve Zdancewic. Encoding information flomaskell. InProceedings of
19th IEEE Computer Security Foundations Workshop (CSBafes 16-27, 2006.

[62] Peter Loscocco and Stephen Smalley. Integrating flexsbpport for security policies
into the Linux operating system. FProceedings of 2001 USENIX Annual Technical
ConferenceSan Diego, CA, June 2001. FREENIX track.

[63] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, andRVShockley. The SeaView
Security Model.IEEE Transactions on Software Engineerid(6):593-607, 1990.

124

[64] Caroline McCarthy. Facebook dumps Secret Crush aqujbic over spyware claintCnet
News.comJanuary 7 2008.
http://news. cnet.com 8301-13577 _3-9843175-36. htm .

[65] Joe Mcdonald. China says web users top u.s. at 253 milAgsociated ProcesSuly 25
2008.

[66] M. Douglas Mcllroy and James A. Reeds. Multilevel ségun the UNIX tradition.
Software—Practice and Experien@2(8):673—694, 1992.

[67] Mark Miller and Jonathan S. Shapiro. paradigm regaimdaktraction mechanisms for
access control. 2003.

[68] The MoinMoin Wiki Engine, December 2006.
http://nmoi nnoi n. wi ki wi ki web. de/.

[69] Andrew C. Myers and Barbara Liskov. A decentralized elddr information flow
control. InProceedings of16th ACM Symposium on Operating Systemeijiteég pages
129-142, Saint-Mal®, France, October 1997.

[70] Andrew C. Myers and Barbara Liskov. Protecting privasyng the decentralized label
model. ACM Transactions on Computer Syste®@):410-442, October 2000.

[71] National Vulnerability Database. CVE-2007-2637.
htt p://nvd. ni st. gov/ nvd. cf nPcvenane=CVE- 2007- 2637.

[72] News10. Hacker accesses thousands of personal datatfilé&SU Chico, March 2005.
http://ww. news10. net/ di spl ay story. aspx?storyi d=9784.

[73] Open Source Vulnerability Database.
http://osvdb. or g/ sear chdb. php?base=noi nnoi n.

[74] J. Ouaknine. A framework for model-checking timed C3Bchnical report, Oxford
University, 1999.

[75] Bryan Parno, Cynthia Kuo, , and Adrian Perrig. Phootpnehishing prevention. In
Proceedings of the 10th International Conference on FiierCryptography and Data
Security Anguilla, British West Indies, February 2006.

[76] PostgreSQLht t p: / / www\. post gresql . org.

[77] Francois Pottier and Vincent Simonet. Information flioference for ML. In
Proceedings of Symposium on Principles of Programming uaggs (POPL)pages
319-330, 2002.

[78] Kevin Poulsen. Car shoppers’ credit details exposdulik. SecurityFocusSeptember
2003.htt p: // www. securityfocus. com news/ 7067.

125

[79] Kevin Poulsen. Ftc investigates petco.com securitg.n®ecurityFocusDecember
2003.htt p: // wwv. securi tyfocus. com news/ 7581.

[80] Niels Provos. Improving host security with system galicies. InProceedings of 12th
USENIX Security Symposiyuivashington, DC, August 2003.

[81] Niels Provos, Dean McNamee, Panayiotis Mavrommates\¥ang, and Nagendra
Modadugu. The ghost in the browser: Analysis of Web-basddana. InProceedings
of First Workshop on Hot Topics in Understanding Botp&ambridge, MA, April 2007.

[82] Inc. Red Hat. JBoss enterprise middlewaret p: / / www. j boss. or g.

[83] G. M. Reed and A. W. Roscoe. A timed model for communigasequential processes.
Theoretical Computer Scienggages 249-261, 1988.

[84] Ivan Ristic. Firefox 3 improves handling of invalid E8ertificates, April 2008.
http://blog.ivanristic.com 2008/ 04/firefox-3-ssl-i.htm.

[85] A. W. RoscoeA Theory and Practice of Concurrencirentice Hall, London, UK, 1998.

[86] A.W. Roscoe and M. H. Goldsmith. What is intransitivenimierference? I?CSFW:
Proceedings of The 12th Computer Security Foundations $tiofkIEEE Computer
Society Press, 1999.

[87] Peter A. Ryan. A CSP formulation of non-interferencel anwinding. Cipher: IEEE
Computer Society Technical Committee Newsletter on SgduRrivacy, pages 19-30,
1991.

[88] Peter A. Ryan and Steve A. Schneider. Process algelra@minterferenceJournal of
Computer Security(9):75-103, 2001.

[89] Andrei Sabelfeld and Andrew C. Myers. Language-baséalmation-flow security.
IEEE Journal on Selected Areas in Communicatjdiq1):5-19, 2003.

[90] Jerome H. Saltzer. Protection and the control of infation sharing in the multics
system.Communications of the ACM7(7), July 1974.

[91] Jerome H. Saltzer and Michael D. Schroeder. The priotect information in computer
systems.Proceedings of the IEEB3(9):1278-1308, September 1975.

[92] Steve SchneideConcurrent and Real-Time Systems: The CSP Approdain Wiley &
Sons, LTD, Chichester, UK, 2000.

[93] Bruce Schneier. Two-factor authentication: toodiftloo late.Communications of the
ACM, 48(4):136, 2005.

[94] Mark Seaborn. Plash: tools for practical least priyde
http://pl ash. beasts. org.

126

[95] J. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, andWiler. Towards a verified,
general-purpose operating system kernelldtiNICTA Workshop on Operating System
Verification October 2004.

[96] Jonathan S. Shapiro, Jonathan Smith, and David J. E&EBROS: a fast capability
system. InProceedings of17thACM Symposium on Operating Systemsiflég
Kiawah Island, SC, October 199.

[97] 37 Signals. Ruby on railht t p: / / www. r ubyonrai | s. org/ .

[98] S. Smalley, C. Vance, and W. Salamon. Implementing 8&kas a Linux security
module, February 2006.
http://ww. nsa. gov/ sel i nux/ paper s/ nodul e- abs. cf m

[99] Nir Soffer. MoinBenchmarks.
htt p:// moi nmoi n. wi ki wi ki web. de/ Mbi nBenchmar ks.

[100] Chris Soghoian. Hackers target Facebook apps. Maf&@0@28.
http://news. cnet.com 8301-13739 3-9904331-46. htm .

[101] IBM Internet Security Systems. X-for@g2008 mid-year trend statistics. Technical
report, IBM, 2008.ht t p: / / www 935. i bm cont servi ces/ us/i ss/ xforce/
nm dyearreport.

[102] Richard Ta-Min, Lionel Litty, and David Lie. Splittqninterfaces: Making trust between
applications and operating systems configurabléPrbteedings of 2006 Operating
Systems Design and Implementation (O$SB#8attle, Washington, November 2006.

[103] Rebecca Trounson. Major breach of UCLA's computesfilaos Angeles Times
December 12 2006.

[104] VMware. VMware and the National Security Agency teanbtild advanced secure
computer systems, January 2001.
http://ww. viwar e. coml pdf / TechTr endNot es. pdf.

[105] Helen J. Wang, Xiaofeng Fan, Collin Jackson, and Jowétlo Protection and
communication abstractions for Web browsers in Mashup@®rdceedings of 20th
ACM Symposium on Operating Systems Princjgisvenson, WA, October 2007.

[106] Robert Watson, Wayne Morrison, Chris Vance, and BRatuman. The TrustedBSD
MAC framework: Extensible kernel access control for FreBE0. InProceedings of
2003 USENIX Annual Technical Conferenpages 285-296, San Antonio, TX, June
2001.

[107] Dan Wendlandt and Ethan Jackson. Perspectives : iimyesh-style host
authentication with multi-path network probing. Rtoceedings of 2008 USENIX
Annual Technical ConferencBoston, MA, June 2008.

127

[108] Andrew Whitaker, Marianne Shaw, and Steven D. GribBleale and performance in the
Denali isolation kernel. IfProceedings of 5th Symposium on Operating Systems Design
and Implementation (OSDQIPecember 2002.

[109] Chris Wright, Crispin Cowan, Stephen Smalley, Jamesrd, and Greg
Kroah-Hartman. Linux security modules: General secuniyp®rt for the Linux kernel.
In Proceedings of 11th USENIX Security Symposifien Francisco, CA, August 2002.

[110] Edward Z. Yang. HTML purifierht t p: // ht m purifier. org.

[111] Aydan R. Yumerefendi, Benjamin Mickle, and Landon BxCTightLip: Keeping
applications from spilling the beans. Rroceedings of 4th USENIX Symposium on
Networked Systems Design and Implementation (N&I2inbridge, Massachusetts,
April 2007.

[112] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Sequiogram partitioningACM
Transactions on Computer Syster8(3):283-328, 2002.

[113] Nickolai B. Zeldovich, Silas Boyd-Wickizer, Eddie Kter, and David Maziéeres. Making
information flow explicit in HiStar. IrfProceedings of 5th Symposium on Operating
Systems Design and Implementation (OS$SB#8attle, WA, November 2006.

[114] Lantian Zheng and Andrew C. Myers. Dynamic securityela and noninterference. In
Proceedings of 2nd International Workshop on Formal AspatSecurity and Trust
(FAST) August 2004.

[115] Lantian Zheng and Andrew C. Myers. Dynamic securityela and static information
flow control. International Journal of Information Securit$(2):67-84, 2007.

