
Information Flow Control for Secure Web Sites

by

Maxwell Norman Krohn

A.B., Harvard University (1999)
S.M., Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

c©Massachusetts Institute of Technology 2008. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 29, 2008

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
Frans Kaashoek

Professor
Thesis Supervisor

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
Robert Morris

Professor
Thesis Supervisor

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
Eddie Kohler

Associate Professor, UCLA
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .
Professor Terry P. Orlando

Chair, Department Committee on Graduate Student



2



Information Flow Control for Secure Web Sites
by

Maxwell Norman Krohn

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Sometimes Web sites fail in the worst ways. They can reveal private data that can never be
retracted [60, 72, 78, 79]. Or they can succumb to vandalism,and subsequently show corrupt data
to users [27]. Blame can fall on the off-the-shelf software that runs the site (e.g., the operating
system, the application libraries, the Web server, etc.), but more frequently (as in the above
references), the custom application code is the guilty party. Unfortunately, the custom code
behind many Web sites is difficult to secure and audit, due to large and rapidly-changing trusted
computing bases (TCBs).

A promising approach to reducing TCBs for Web sites isdecentralized information flow
control (DIFC) [21, 69, 113]. DIFC allows the split of a Web application into two types of
components: those inside the TCB (trusted), and those without (untrusted). The untrusted com-
ponents are large, change frequently, and do most of the computation. Even if buggy, they cannot
move data contrary to security policy. Trusted components are much smaller, and configure the
Web site’s security policies. They need only change when thepolicy changes, and not when new
features are introduced. Bugs in the trusted code can lead tocompromise, but the trusted code is
smaller and therefore easier to audit.

The drawback of DIFC, up to now, is that the approach requiresa major shift in how program-
mers develop applications and thus remains inaccessible toprogrammers using today’s proven
programming abstractions. This thesis proposes a new DIFC system,Flume, that brings DIFC
controls to the operating systems and programming languages in wide use today. Its key contri-
butions are: (1) a simplified DIFC model with provable security guarantees; (2) a new primitive
calledendpointsthat bridges the gap between the Flume DIFC model and standard operating
systems interfaces; (3) an implementation at user-level onLinux; and (4) success in securing a
popular preexisting Web application (MoinMoin Wiki).

Thesis Supervisor: Frans Kaashoek
Title: Professor

Thesis Supervisor: Robert Morris
Title: Professor

Thesis Supervisor: Eddie Kohler
Title: Associate Professor, UCLA

3



4



Previously Published Material

Chapters 3 and 6 through 9 appeared as part of a previous publication [58]: Maxwell Krohn,
Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. Information flow control for standard OS abstractions. In Proceedings of the 21st
Symposium on Operating Systems Principles (SOSP), Stevenson, WA, October 2007.

5



Acknowledgments

As I finish up five years of graduate work at MIT, I begin to take stock of how indebted I am to so
many, from people I see on a daily basis, to those who were profoundly influential during life’s
previous seasons. The list begins with the faculty advisorswho have taken me under their wing.
M. Frans Kaashoek is an inexhaustible fountain of enthusiasm, encouragement and optimism.
I hope just some of his mastery of everything from grand vision to x86 minutia has rubbed off
on me. But more than anything, his always sunny disposition was the support for my graduate
work, the counterbalance to my histrionic proclivity toward doom and gloom. Not only did
Frans figuratively push me up the mountain with financial, academic, and emotional backing, he
literally did so in our strenuous1 bike rides together. The cliché is that a graduate advisor acts in
loco parentis, but in this case the cliché rings true in the best way. Thanks Frans for everything.

Robert Morris played the part of the skeptical outsider. It took me a while to realize this
was a personae he assumed to make my work better, more focused, and more convincing to
those who lacked our MIT/LCS/PDOS biases. By now, his lessonhas started to sink in, and
I will always hear a voice: how can you say this in a simpler way? how much mechanism is
really required? what problem are you really solving? In a world easily won over by jargon and
pseudo-intellectualism, Robert’s language, approach, precision and insights are genuine. I thank
Robert for the time and effort he has invested in my papers, mytalks and me over the years, and
hope I can instill the same values in my students.

Rounding out this team is Eddie Kohler. Eddie and I don’t always see eye-to-eye on how
best to present information, but given his community-wide reputation for amazing graphical
design, I must be in the wrong. Eddie worked tirelessly with me (and in spite of me) to refine
the paper versions of Chapters 3 and 6, improving their quality tremendously. Our collaboration
on earlier projects, like OKWS, Asbestos and Tame, producedsimilar results: different styles,
but a product that shined in the end. Eddie’s dedication to improving my work, his curiosity to
learn more about the ideas that interest me, and his coachingon the finer points of presentation
have made me a better researcher and communicator. Thank youEddie.

Some faculty in and around MIT werenot my advisors, but they nonetheless advised me
well. Butler Lampson, a thesis reader, gave this thesis a thorough and careful read. I sincerely
thank him for his comments and insights, which have helped improve this document greatly.
Srini Devadas, Arvind, and Jamie Hicks sat through my practice talks and internal MIT-Nokia
presentations, giving me helpful commentary on content andstyle. Hari Balakrishnan and John
Guttag sat through those talksandpractice job talks, helping me to put my best foot forward on
the job market.

Eran Tromer helped me understand non-interference, and he suggested the high-level Flume
formal model. Chapters 4 and 5 bear his influence, and we plan to turn them into a coauthored
paper. I thank Alex Yip for his deep contributions to the Flume, Asbestos and W5 projects, his
tireless enthusiasm, his talents in hacking and writing, and his inexhaustible wisdom in matters
of cycling, cycle repair, and general do-it-yourself. Thanks to Micah Brodsky for his contri-
butions to Flume, W5 and many fascinating conversations. Thanks to Steve VanDeBogart and
Petros Efstathopoulos—friends and colleagues at UCLA—whowere coauthors on the Asbestos
paper. They along with Nickolai Zeldovich offered advice and commentary on the Flume paper
and talk. Thanks to Nickolai for also reviewing Chapters 4 and 5 of this thesis. Natan Cliffer

1For me, not for him.

6



contributed to Flume, Neha Narula to W5, and Cliff Frey and Dave Ziegler to Asbestos.
Material in this thesis has been published elsewhere, thus it benefits from careful readings

and comments from reviewers and paper shepherds. I thank Andrew Myers, Emin Gün Sirer,
and the anonymous reviewers from Usenix ’04, HotOS ’05, SOSP’05 and SOSP ’07. I thank
Nokia, ITRI, MIT, and the NSF for their generous financial support.

I graduated from the same high school, college and now graduate program one year behind
Mike Walfish and have benefited outrageously from his having to figure things out on his own.
Mike has advised me on: how to get into college, which classesto take, how to get into graduate
school, how to write papers and talks, how to get a job, and everything in between. He’s also
been a patient, selfless and endlessly entertaining friend throughout. Mike, since this is the one
page of text I’ve written in the last five years that you haven’t been kind enough to proofread, I
apologize in advance for any typos. Jeremy “Strib” Stribling and I showed up to graduate school
on the same day, and he has been an inspiring friend and colleague ever since. I thank Strib
for everything from reading drafts of my papers, to droppingnumerous well-timed jokes. Dan
Aguayo, he of perpetualpositive-outlook, deserves credit for making me laugh as hard
as physically possible. Props to Strib and Dan for being my coauthors on infinitely many papers
regarding the KGB’s underwater testbed of Commodore 64s.

Bryan Ford and Chris Lesniewski-Laas always went above and beyond in their commentary
on drafts and practice talks, helping defend my work when my own attempts faltered. Thanks to
Russ Cox and Emil Sit for their management of PDOS computer resources, and more important
their willingness to drop everything to help out. I thank Frank Dabek and Jinyang Li for their
mentorship and friendship. To Meraki folks like John Bicket, Sanjit Biswas, Thomer Gil and
Sean Rhea: we’ve missed you in 32-G980, but it was great whileit lasted. I thank those in
PDOS whom I’ve overlapped with, such as: Dave Andersen, Silas Boyd-Wickizer, Benjie Chen,
Douglas De Couto, Kevin Fu, Michael Kaminsky, Petar Maymounkov, Athicha Muthitacharoen,
Alex Pesterev, Jacob Strauss, Jayashree Subramanian, and Emmett Witchel. Thanks to Neena
Lyall for her help in getting things done in CSAIL. And special thanks to the NTT Class of 1974.

The few times I ventured outside of 32-G980, I enjoyed the company of and learned much
from: Dan Abadi, Emma Brunskill, James Cowling, Alan Donovan, Sachin Katti, Sam Madden,
Dan Myers, Hariharan Rahul, the other members of CSAIL’s hockey and softball teams, and the
MIT Jazz Ensemble to name but a few. Barbara Liskov ensured the espresso beans rained like
manna from the heavens; Kyle Jamieson, managed the milk pool. They conspired to keep me
caffeinated, and I can’t thank them enough.

Some of the work alluded to in this thesis (like Tame and OKWS)has found adoption at a
Web concern dubbedOkCupid.com. I thank the engineers there for using this software and
helping to make it better. I thank Sam Yagan and Chris Coyne for manning the OkCupid fort
while I manned the ivory tower, and thanks to Chris for sharing just a fraction of his original
ideas, which often made for interesting academic research projects.

Before I came to graduate school, I was David Mazières’s research scientist at New York
University. From him I learned the ropes of systems research: how to program, which problems
were interesting, which solutions to consider, how to breakin the back door, and generally speak-
ing, how to be a scientist. I thank David for his software tools, his formative mentorship, and
in general his intellectual-freedom-loving ethos. I thankother collaborators at NYU, including
Michael Freedman, Dennis Shasha, Antonio Nicolosi, Jinyuan Li, and Yevgeniy Dodis.

7



Before starting at NYU, I met the love of my life (now wife) Sarah Friedberg (now Krohn).
Sarah, thanks for your love, help, companionship and support through these five years of gradu-
ate school. I could not have done it without you, and I love you!

Still further in the past, I grew as an undergraduate under the tutelage of many luminaries,
chief among them Michael O. Rabin, Peter Sacks and Helen Vendler. Thanks to them for instill-
ing in me a love of academics and intellectual pursuits. In high school, Julie Leerburger more
than anyone else taught me to write.2 A final heartfelt thank-you to my mom, dad and sister,
who taught me just about everything else.

2This sentiment was expressed in the same context by someone else one year ago.

8



Contents

1 Introduction 13
1.1 Threats to Web Security . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 13

1.1.1 Exploiting the Channel . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.1.2 Exploiting the Web Browser . . . . . . . . . . . . . . . . . . . . . . .15
1.1.3 Exploiting the Web Servers . . . . . . . . . . . . . . . . . . . . . . .. 15
1.1.4 Exploiting Extensible Web Platforms . . . . . . . . . . . . . .. . . . 16

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Flume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Application and Evaluation . . . . . . . . . . . . . . . . . . . . . .. . 23

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.6 Limitations, Discussion and Future Work . . . . . . . . . . . . .. . . . . . . 24

2 Related Work 27
2.1 Securing the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Mandatory Access Control (MAC) . . . . . . . . . . . . . . . . . . . . .. . . 28
2.3 Specialized DIFC Kernels . . . . . . . . . . . . . . . . . . . . . . . . . .. . 29
2.4 Language-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . .. . . 30
2.5 Capabilities Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 30

3 The Flume Model For DIFC 33
3.1 Tags and Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Decentralized Privilege . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 35

3.2.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Global Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.2.3 Examples and Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Safe Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 External Sinks and Sources . . . . . . . . . . . . . . . . . . . . . . .. 39
3.3.3 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Covert Channels in Dynamic Label Systems . . . . . . . . . . . . .. . . . . . 41
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9



10

4 The Formal Flume Model 45
4.1 CSP Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 System Call Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 49
4.3 Kernel Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.4 Process Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51
4.5 System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Helper Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

4.7.1 The Tag Manager(TAGMGR) . . . . . . . . . . . . . . . . . . . . . . 57
4.7.2 The Process Manager (PROCMGR) . . . . . . . . . . . . . . . . . . . 60
4.7.3 Per-process Queues (QUEUES) . . . . . . . . . . . . . . . . . . . . . 60

4.8 High Level System Definition . . . . . . . . . . . . . . . . . . . . . . . .. . 62
4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Non-Interference 65
5.1 CSP Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65
5.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Stability and Divergence . . . . . . . . . . . . . . . . . . . . . . . .. 67
5.2.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Declassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.4 Model Refinement and Allocation of Global Identifiers .. . . . . . . . 69

5.3 Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Theorem and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 76
5.6 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Fitting DIFC to Unix 79
6.1 Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Enforcing Safe Communication . . . . . . . . . . . . . . . . . . . . . .. . . 81
6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Implementation 85
7.1 Confined and Unconfined Processes . . . . . . . . . . . . . . . . . . . .. . . 85
7.2 Confinement,spawn andflume fork . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.1 spawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.2 flume fork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 IPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4.1 Files and Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.2 File Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.3 Persistent Privileges . . . . . . . . . . . . . . . . . . . . . . . . . .. 94
7.4.4 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4.5 Setlabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



11

7.4.6 Privileged Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.4.7 File System Implementation . . . . . . . . . . . . . . . . . . . . . .. 96

7.5 Implementation Complexity and TCB . . . . . . . . . . . . . . . . . .. . . . 97

8 Application 99
8.1 MoinMoin Wiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Fluming MoinMoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3 FlumeWiki Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
8.4 Principals, Tags and Capabilities . . . . . . . . . . . . . . . . . .. . . . . . . 101
8.5 Acquiring and Granting Capabilities . . . . . . . . . . . . . . . .. . . . . . . 101
8.6 Export- and Write-Protection Policies . . . . . . . . . . . . . .. . . . . . . . 101
8.7 End-to-End Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 102
8.8 Principal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103
8.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9 Evaluation 105
9.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2 Interposition Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 105
9.3 Flume Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.4 Cluster Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 107
9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10 Discussion, Future Work and Conclusions 109
10.1 Programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 109
10.2 Security Compartment Granularity . . . . . . . . . . . . . . . . .. . . . . . . 111
10.3 Maintenance and Internals . . . . . . . . . . . . . . . . . . . . . . . .. . . . 112
10.4 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.4.1 Programmer Bugs That Do Not Allow Arbitrary Code Execution . . . . 113
10.4.2 Virulent Programmer Bugs . . . . . . . . . . . . . . . . . . . . . . .. 113
10.4.3 Invited Malicious Code . . . . . . . . . . . . . . . . . . . . . . . . .. 114

10.5 Generality and Future Directions . . . . . . . . . . . . . . . . . .. . . . . . . 115
10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A More on Non-Interference 117
A.1 Unwinding Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



12



Chapter 1

Introduction

At least three trends indicate that the World Wide Web will expand upon its successes for the
foreseeable future. Most obviously, more people than ever use it, with penetration in China alone
reaching 253 million, up 56% year-over-year [65]. Second, Web sites are gaining prominence,
amassing more sensitive data and exerting more influence over everyday life. Third, Web tech-
nology continues to mature, with Web sites progressing fromstatic pages to dynamic, extensible
computing platforms (e.g. Facebook.com [25] and OpenSocial [40]). All the while, Web se-
curity remains weak, as seen in the popular press [27, 60, 72,52, 78, 79, 103] and published
technical surveys [33, 101].

All trends spell potential for Web attackers, who see a growing population of victims using
browsers and Web sites with unpatched security holes. As Websites increase in sophistication,
attackers get more powerful tools. As sites amass data and sway, attackers see increased payoffs
for infiltration. In general, a worsening security trend threatens to mar the world’s transition to
Web-based computing, much as it marred the previous shift tonetworked PCs.

This thesis aims to improve the overall state of Web security. The first aspect of this challenge
is to identify the right problem to attack: with so much wrongwith the current Web infrastruc-
ture, which components need the most attention, and which are most amenable to drastic change?
This introductory chapter provides a survey of the Web’s weaknesses, and focuses attention on
one in particular: the code running on Web servers that varies from site to site. We hypothesize
that to secure such software, operating systems (OS) ought to expose better interfaces and better
security tools to Web application developers. This thesis develops a general theory for what
those interfaces and tools should be.

1.1 Threats to Web Security

Figure 1-1 shows a simplified diagram of how the Web works today. Client machines run Web
browsers that routinely connect to different servers spread through the Internet. In this example,
serversa.com, b.com andc.com are involved. The browser queries these servers, receiving
HTML responses, then renders that HTML into a convenient user interface. The browser maps
different server responses to different user interface (UI) elements, such as browsertabs, browser

13



14

Figure 1-1: A simplified diagram of the Web architecture.

windows, or eveniframes, which embed one server’s response inside another’s. In many
Web systems, databases on the server side (those run bya.com, b.com, andc.com) house
a majority of the useful data. However, those servers can store small data packets, known as
cookies, persistently on clients’ browsers. The browser enforces asecurity policy: allowa.com
to set and retrieve a browser cookie for its own use, but disallow it to tamper withb.com’s
cookie.

In modern settings, all parts of the system in Figure 1-1 are under attack: the UI elements on
the browser, the cookie system, the server infrastructure,the transport between client and server,
etc. Weaknesses anywhere along this chain can allow adversaries to steal or corrupt sensitive
data belonging to honest users. These attacks fall under three general headings: channel, client
and server.

1.1.1 Exploiting the Channel

Most Web systems depend upon some authenticated, eavesdropping-resistant channel between
the client and server. In practice, such a channel is difficult to establish. Users typically prove
their identity to servers with simple passwords, but various social engineering attacks (especially
phishing[18]) allow attackers to capture and replay these login credentials. In other cases, users
have weak passwords, or the same passwords for many sites, allowing an unscrupulous site
administrator at sitea.com steal Alice’s data fromb.com. Also, users on compromised clients
(those infected with malware) can lose their keystrokes (and hence their login credentials) to
whomever controls their machines.

Even if a user can authenticate successfully to the remote server, other challenges to his
session remain. Many Web sites do not use Secure Sockets Layer (SSL) [19], and hence their
network communication is susceptible to tampering or eavesdropping. For even those Web sites
that do, the question of how to distribute server certificates remains open. For instance, attackers
can distribute bogus certificates for well-known sites by exploiting confusing client UIs and



15

weaknesses in the domain name system (DNS) [20, 47, 107].

1.1.2 Exploiting the Web Browser

Other attacks target the Web browser, preying on its management of sensitive data (like cookies)
and its ability to install software like plug-ins. The most tried-and-true of these methods is Cross-
Site Scripting (XSS) [10, 22, 54]. In XSS, an attacker Mallory controls sitec.com but wishes
to steal information from Victor as he interacts with sitea.com. Mallory achieves these ends by
posting JavaScript code toa.com, perhaps as a comment in a forum, a blog post, or a caption on
a photo. If buggy, code running ona.com’s server will show Mallory’s unstripped JavaScript
to other users like Victor. His browser will then execute thecode that Mallory crafted, with the
privileges ofa.com. Thus, Mallory’s code can access Victor’s cookie fora.com and instruct
the browser to send this data toc.com, which she controls. Once Mallory recovers Victor’s
cookie, she can impersonate Victor toa.com and therefore tamper with or steal his data. Other
attacks use similar techniques to achieve different ends. Cross-site Request Forgery [50] hijacks
user sessions to compromise server-side data integrity, for example, to move the user’s money
from his bank account to the attacker’s. “Drive-by downloading” exploits browser flaws or XSS-
style JavaScript execution to install malware on Victor’s machine [81].

1.1.3 Exploiting the Web Servers

The third category of attacks will be the focus of this thesis: attacks on server-side Web comput-
ing infrastructure, like the Web servers, databases and middleware boxes that power sitesa.com,
b.com andc.com in our examples. Web servers are vulnerable to all of the “classic” attacks
observed throughout the Internet’s history, such as: weak administrator passwords, server pro-
cesses (likesendmail or ssh) susceptible to buffer overflows, kernel bugs that allow local
non-privileged users to assume control of a machine, or physical tampering.

Even if resilient to traditional attacks, Web servers face grave challenges. Many of today’s
dynamic Web sites serve as interfaces to centralized databases. They are gatekeepers, tasked
with keeping sensitive data secret and uncorrupted. Unfortunately, these Web sites rely on huge
and growing trusted computing bases (TCBs), which include:the operating system, the stan-
dard system libraries, standard system services (like e-mail servers and remote shell servers),
application libraries, Web servers, database software, and most important, the Web application
itself. In some cases, the application is off-the-shelf software (like MoinMoin Wiki, discussed
in Chapter 8), but in many others, the code varies wildly fromsite to site.

Most popular search engines, e-commerce sites, social networks, photo-sharing sites, blog
sites, online dating sites, etc., rely heavily on custom code, written by in-house developers. In
documented cases, custom code can reach hundreds of thousands [57] or millions [15] of lines,
contributed by tens to thousands of different programmers.Some Web sites like Amazon.com
serve each incoming Web request with sub-requests to hundreds of different logical services
(each composed undoubtedly of thousands of lines of proprietary code), running on machines
distributed throughout a huge cluster [16]. In all cases, these exploding codebases do not benefit



16

Figure 1-2: Facebook.com allows third-party applications.

from the public scrutiny invested in popular open source software like the Linux Kernel or the
Apache Web server.

In practice, bugs in custom code can be just as dangerous as those deeper in the software
stack (like the kernel). In-house Web developers can introduce vulnerabilities in any number
of ways: they can forget to apply access control checks, failto escape input properly (resulting
in SQL-injection attacks [42]), allow users to input JavaScript into forms (resulting in the XSS
attacks mentioned previously), and so on. Web sites often update their code with little testing,
perhaps to enhance performance in the face of a flash crowd, orto enable new features to stay
abreast of business competitors. Tech news articles and vulnerability databases showcase many
examples in which security measures failed, leaking private data [60, 72, 52, 78, 79, 103], or
allowing corruption of high-integrity data [27]. In most ofthese cases, the off-the-shelf software
worked, while site-specific code opened the door to attack. Indeed, surveys of Web attacks show
an uptick in SQL-injection style attacks on custom-code, while popular off-the-shelf software
seems to be stabilizing [101].

1.1.4 Exploiting Extensible Web Platforms

Innovations in Web technology have in recent years made server-side security worse. Whereas
Web code was previously written by well-meaning yet sometimes careless professional Web
developers, new extensible Web platforms like Facebook andOpenSocial allow malicious code
authors to enter the fray. The stated intention of these platforms is to allow third-party application
developers to extend server-side code. By analogy, the baseWeb site (Facebook.com) is a Web-
based operating system, providing rudimentary services like user authentication and storage.
Independent developers then fill in the interesting site features, and the software they write can
accesses the valuable data that Facebook stores on its servers. Applications exist for all manner



17

Figure 1-3: A request for a built-in Facebook Application

Figure 1-4: A request for a Third-Party Facebook Application

of social interactions, from playing poker games to boasting about vacation itineraries. Figure 1-
2 shows, for example, that users have many applications to chose from, and that they can manage
these applications much as they would the applications on their desktop machines.

Company white papers imply the implementation is straightforward. Figure 1-3 shows the
request flow for one of Facebook’sbuilt-in applications, written by the Facebook developers.
The browser makes a Web request to Facebook’s server; the request is routed to Facebook’s
built-in code, which outputs a response after communicating with the company’s database. For
third-party applications (as in Figure 1-4), Facebook routes the client’s request to Web servers
controlled by the third party. When, as shown in the example,Alice accesses the “Aquarium”
third-party application, that software can access some of Alice’s records stored on Facebook’s
database and then move that data to its own third-party database. (Some data like the user’s
e-mail address and password remain off-limits). If the “Aquarium” application becomes popu-
lar, it can collect data on behalf of more and more Facebook users, yielding a private copy of
Facebook’s database [24].

When Alice installs the Aquarium application, it becomes part of Facebook’s TCB from
her perspective. Alice must trust this software to adequately safeguard her data, but in prac-



18

tice, she has no guarantee Aquarium is up to the task. In some cases, vulnerabilities in well-
intentioned third-party Facebook applications allow attackers to steal data [100], like that stored
in the “Aquarium” database in Figure 1-4. In others, the applications are explicitly malicious,
created with the primary goal of lifting data from Facebook [64]. Thus, Facebook has recreated
for server applications a plague that already infests desktop applications: malware.

Following the well-known script, Facebook takes the same precaution against malware that
current operating systems do: it prompts the user, asking the user if he really wants to run and
trust the new application (see Figure 1-5). This malware countermeasure has the same limitation
on the Web as it does on the desktop: users have no way of knowing what software will do. Even
the best automated static analysis tools (which Facebook does not offer) cannot fully analyze an
arbitrary program (due to decidability limitations). The best such a scheme can accomplish is to
partition the set of users into two groups: those who are cautious, who avoid data theft but do
not enjoy new extensions; and those who are eager-adopters,who are bound to install malware
eventually. A representative from Facebook captures this dismal state of affairs aptly: “Users
should employ the same precautions while downloading software from Facebook applications
that they use when downloading software on their desktop” [64]. In other words, Facebook’s
security plan is at best as good as the desktop’s, which we know to be deeply flawed.

While we have focused on Facebook, the competing OpenSocialplatform is susceptible to
many of the same attacks [41]. Along the current trajectory,Web applications have the potential
to replace desktop applications, but not with secure alternatives. Rather, the more they mimic
the desktop in terms of flexibility and extensibility, the less secure they become.

1.2 Approach

In either case—the traditional attacks against Web sites that exploit bugs, or the new “malware”
attacks against extensible platforms—the problem is the same: TCBs that are too large, which
contain either buggy code that acts maliciously in an attack, or inherently malicious code. The
challenge, therefore, is to give Web developers the tools tocleanse their TCBs of bloated, in-
secure code. In particular, we seek an approach to purge site-specific code (e.g. Facebook’s
proprietary software) and third-party code (e.g. Aquarium) from TCBs, under the assumption
that it receives a fraction of the scrutiny lavished on more popular software like Linux or Apache.
The thesis presents a new design, in which a small, isolated module controls the Web site’s secu-
rity. Bugs outside of this module (and outside the TCB) mightcause the site to malfunction, but
not to leak or corrupt data. A security audit can therefore focus on the security module, ignoring
other site-specific code. Though this thesis focuses on “traditional” attacks in which adversaries
exploit bugs in well-intentioned code, the techniques generalize, and have the potential to secure
server-side malware in future work.

Recent work shows thatdecentralized information flow control(DIFC) [21, 70, 113] can
help reduce TCBs in complex applications. DIFC is a variant of information flow control
(IFC) [5, 7, 17] from the 1970s and 1980s. In either type of system, a tamper-proof software
component (be it the kernel, the compiler, or a user-levelreference monitor) monitors processes
as they communicate with each other and read or write files. A processp that reads “secret”



19

Figure 1-5: The screen Facebook.com prompts users with whenactivating a new application.

data is marked as having seen that secret, as are other processes thatp communicates with, and
processes that read any files thatp wrote after it saw the secret. In this manner, information flow
control systems compute the transitive closure of all processes on the system that could possibly
have been influenced by a particular secret. The system then constrains how processes in the clo-
sure export data out of the system. In the case of IFC systems,only a trusted “security officer”
can authorize export of secret data. In a DIFC system the export privilege is decentralized (the
“D” in DIFC), meaning any process with the appropriate privileges can authorize secret data for
export.

This thesis applies DIFC ideas to Web-based systems. As usual, an a chain of communicating
server-side processes serves incoming Web requests. Processes in the chain that handle secret
data are marked as such. If these marked processes wish to export data, they can do so only with
the help of a process privileged to export secrets (known as adeclassifier). A simple application-
level declassifier appropriate for many Web sites allows Bob’s secret data out to Bob’s browser
but not to Alice’s. Those processes without declassification privileges then house a majority of
the site specific code. They can try to export data against thesystem’s security policies, but such
attempts will fail unless authorized by a declassifier.

Example: MoinMoin Wiki This thesis considers the popular MoinMoin Website package[68]
as a tangible motivating example. MoinMoin is Wiki application: a simple-to-use Web-based
file system that allows Web users to edit, create, modify, andorganize files. The files are either



20

HTML pages that link to one another, or binary files like photos and videos. Like a file system,
MoinMoin associates an access control list (ACL) [90] with each file, which limit per-file read
and write accesses to particular users.

Internally, the Wiki’s application logic provides all manners of text-editing tools, parsers,
syntax highlighting, presentation themes, indexing, revision control, etc., adding up to tens of
thousands of lines of code. The security modules that implement ACLs are largely orthogonal
in terms of code organization. However, in practice, all code must be correct for the ACLs to
function properly. Consider the simple case in which Alice creates a file that she intends for Bob
never to read. The code that accepts Alice’s post, parses it and writes it to storage on the server
must faithfully transmit Alice’s ACL policy, without any side-effects that Bob can observe (like
making a public copy of the file). When Alice’s file later exitsthe server on its way out to client
browsers, the code that reads the file from the disk, parses it, renders the page and sends the page
out to the network must all be correct in applying ACL policies, lest it send information to Bob
against Alice’s wishes. All of this code is in MoinMoin’s TCB.

By contrast, a DIFC version of MoinMoin, (like that presented in Chapter 8) enforcesend-
to-end secrecywith small isolated declassifiers (hundreds of lines long).Bugs elsewhere in the
Wiki software stack can cause program crashes or other fail-stop behavior but do not disclose
information in a way that contradicts the security policy. Only bugs in the declassifiers can cause
such a leak.

Web applications like Wikis also stand to benefit fromintegrity guarantees: that important
data remains uncorrupted. Imagine Alice and Charlie are in agroup that communicates through
the Wiki to track important decisions, such as whether or notto hire a job applicant. They must,
again, trust a large stack of software to faithful relay their decisions, and any bugs in the work-
flow can mistakenly or maliciously flip that crucial “hire” bit. An end-to-endintegrity policy for
this example only allows output if all data handlers meet integrity requirements — that they all
were certified by a trusted software vendor, for instance. Asabove, bugs that cause accidental
invocation of low-integrity code produce fail-stop errors: the program might crash or refuse to
display a result, but it will never display a result of low integrity.

1.3 Challenges

DIFC techniques are powerful in theory, but at least five important hurdles prevent their appli-
cation to modern Web sites (like MoinMoin Wiki), which no existing system has entirely met.
They are:

Challenge 1: DIFC clashes with standard programming techniques. DIFC originated as a
programming language technique [69], and it has found instantiations in many strongly typed
languages, such as Java [70], Haskell [61], the typed lambdacalculus [115], ML [77], and so
on. However, such techniques are not compatible with legacysoftware projects and generally
require rewriting applications and libraries [44]. Also, language-based information flow control
is a specialized form of type-checking. It cannot apply to languages without static typing, such
as Python, PHP, Ruby, and Perl, which are popular languages for developing modern Web sites.



21

Thus, a challenge is to adopt DIFC techniques for programs written for existing, dynamically-
typed, threaded languages.

Challenge 2: DIFC clashes with standard OS abstractions. Popular operating systems like
Linux and Microsoft Windows have a more permissive securitymodel than DIFC systems: they
do not curtail a process’s future communications if it has learned secrets in the past. Thus,
programs written to the Linux or Windows API often fail to operate on a DIFC system. Current
solutions make trade-offs. On one extreme, the Asbestos Operating System [21] implements
DIFC suitable for building Web applications, but does not expose a POSIX interface; it therefore
requires a rewrite of many user-space applications and libraries. On the other extreme, the
SELinux system (a “centralized” information flow control system) preserves the entire Linux
interface, but at the expense of complicated application development. It requires lengthy and
cumbersome application-specific policy files that are notoriously difficult to write.

Challenge 3: DIFC at the kernel-level requires a kernel rewrite. Asbestos [21] and HiS-
tar [113] are DIFC-based kernels, but are written from scratch. Such research kernels do not
directly benefit from the ongoing (and herculean) efforts tomaintain and improve kernel sup-
port for hardware and an alphabet-soup of services, like NFS, RAID, SMP, USB, multicores,
etc. Asbestos and HiStar are also fundamentallymicrokernels, whereas almost every common
operating system today, for better or worse, follows amonolithicdesign. So a challenge is to
reconcile DIFC with common OS organization and popular kernel software.

Challenge 4: DIFC increases complexity. Common operating systems like Linux already
complicate writing secure programs [56]. Information flow systems are typically more com-
plex. Security-typed languages require more type annotations; system calls in security-enabled
APIs have additional arguments and error cases. Moreover, most information flow systems use
lattice-based models [17], adding mathematical sophistication to the basic programming API. A
challenge is to curtail complexity in the DIFC model and the API that follows.

Challenge 5: DIFC implementations have covert channels. All information flow control
implementations, whether at the language level or the kernel level, suffer fromcovert channels:
crafty malicious programs can move information from one process to another outside of modeled
communication channels. For example, one exploitative process might transmit sensitive infor-
mation by carefully modulating its CPU use in a way observable by other processes. For fear of
covert channels, language-based systems like Jif disable all threading and CPU parallelism. As
discussed in Section 3.4, some OS-based IFC implementations like Asbestos and IX [66] have
wide covert channels inherent in their API specifications. HiStar sets a high standard for covert
channel mitigation, but timing and network-based channelspersist. So a challenge, as always, is
to build a DIFC system that suffers from as few covert channels as possible.



22

1.4 Flume

We presentFlume, a system that answers many of the above challenges. At a highlevel,Flume
integrates OS-level information flow control with a legacy Unix-like operating system. Flume
allows developers to build DIFC into legacy applications written in any language, either to up-
grade their existing security policies or to achieve new policies impossible with conventional
security controls.

1.4.1 Design

Unix has a wide and imprecisely defined interface, complicating attempts to “retrofit” it with
DIFC security controls [56]. This thesis takes a four-stageapproach to the problem, with each
stage corresponding to a chapter:

• Chapter 3 describes, independent of OS specifics like reliable communication, what prop-
erties a DIFC system ought to uphold. The logical starting point for such a definition is
the IFC literature [5, 7, 17], in which processes communicate pairwise with one-way mes-
saging. A new and simplified model, called the Flume model, extends the original IFC
definitions to accommodate decentralized declassification(as in DIFC).

• Chapter 4 states this model formally in the Communicating Sequential Processes (CSP)
Process Algebra [46].

• Chapter 5 then proves that the Flume model fits a standard definition of non-interference:
that is, the processes who have seen secret data cannot have any impact on the processes
who haven’t. Such formalisms separate Flume from other IFC operating systems whose
APIs encapsulate wide data leaks.

• Chapter 6 details a practical system that fits the model, filling in details like reliable, flow-
controlled interprocess communication (IPC) and file I/O.

The new OS abstraction that allows Flume to fit DIFC to a Unix-like API is theendpoint.
Flume represents each resource a process uses to communicate (e.g., pipes, sockets, files, net-
work connections) as an endpoint. A process can configure an endpoint, communicating to
Flume what declassification policy to apply to all future communication across that endpoint.
However, Flume constrains endpoints’ configurations so that processes cannot leak data that
they do not have privileges to declassify. For instance, a process that has a right to declassify a
secret file can establish one endpoint for reading the secretfile and another endpoint for writing
to a network host. It can then read and write as it would using the standard API. Flume dis-
allows a process without those declassification privilegesfrom holding both endpoints at once.
Chapter 6 covers endpoints in detail.



23

1.4.2 Implementation

Flume is implemented as a user-space reference monitor on Linux with few modifications to
the underlying kernel. Legacy processes on a Flume system can move data as they always did.
However, if a process wishes to access data under Flume’s control, it must obey DIFC con-
straints, and therefore cannot leak data from the system unless authorized to do so. Unlike prior
OS-level DIFC systems, Flume can reuse a kernel implementation, driver support, SMP sup-
port, administrative tools, libraries, and OS services (TCP/IP, NFS, RAID, and so forth) already
built and supported by large teams of developers. And because it maintains the same kernel
API, Flume supports existing Linux applications and libraries. The disadvantage is that Flume’s
trusted computing base is many times larger than Asbestos’sor HiStar’s, leaving the system vul-
nerable to security flaws in the underlying software. Also, Flume’s user space implementation
incurs some performance penalties and leaves open some covert channels solvable with deeper
kernel integration. Chapter 7 discusses implementation details.

1.4.3 Application and Evaluation

To evaluate Flume’s programmability, we ported MoinMoin Wiki to the Flume system. As men-
tioned above, MoinMoin Wiki is a feature-rich Web document sharing system (91,000 lines of
Python code), with support for access control lists, indexing, Web-based editing, versioning,
syntax highlighting for source code, downloadable “skins,” etc. The challenge is to capture
MoinMoin’s access control policies with DIFC-based equivalents, thereby moving the security
logic out of the main application and into a small, isolated security module. With such a refac-
toring of code, only bugs in the security module (as opposed to the large tangle of MoinMoin
code and its plug-ins) can compromise end-to-end security.

An additional challenge is to graft a new policy onto MoinMoin code that could not exist
outside of Flume:end-to-end integrity protection. Though MoinMoin can potentially pull third-
party plug-ins into its address space, cautious users mightdemand that plug-ins never touch (and
potentially corrupt) their sensitive data, either on the way into the system, or on the way out. We
offer a generalization of this policy to include different integrity classes based on which plug-ins
are involved.

FlumeWiki achieves these security goals with only a thousand-line modification to the origi-
nal MoinMoin system (in addition to the new thousand-line long security module). Though prior
work has succeeded in sandboxing legacy applications [113]or rewriting them anew [21], the re-
placement of an existing dataflow policy with a DIFC-based one is a new result. The FlumeWiki
TCB therefore looks different from that of original MoinMoin: it contains the Flume system,
and the security module, but not the bulk of MoinMoin’s application-specific code. MoinMoin’s
original TCB does not contain Flume, but it does contain all MoinMoin code, including any plug-
ins installed on-site. As a result of this refactoring of theTCB, FlumeWiki solves security bugs
in code it inherited from the original MoinMoin, as well as previously unreported MoinMoin
bugs discovered in the process of implementing FlumeWiki. Chapter 8 describes the FlumeWiki
application in greater detail.

As described in Chapter 9, experiments with FlumeWiki on Linux show the new system per-



24

forms within a factor of two of the original. Slow-downs are due primarily to Flume’s user-space
implementation, though the Flume design also accommodateskernel-level implementations.

1.5 Contributions

In sum, this thesis makes the following technical contributions:

• New DIFC rules that fit standard operating system abstractions well and that are simpler
than those of Asbestos and HiStar. Flume’s DIFC rules are close to rules for “central-
ized” information flow control [5, 7, 17], with small extensions for decentralization and
communication abstractions found in widely-used operating systems.

• A formal model and proof of correctness.

• A new abstraction—endpoints—that bridge the gap between DIFC and legacy Unix ab-
stractions.

• The first design and implementation of process-level DIFC for stock operating systems
(OpenBSD and Linux). Flume is useful for securing Web sites,and also other client- and
server-side software.

• Refinements to Flume DIFC required to build real systems, such as machine cluster sup-
port, and DIFC primitives that scale to large numbers of users.

• A full-featured DIFC Web site (FlumeWiki) with novel end-to-end integrity guarantees,
composed largely of existing code.

1.6 Limitations, Discussion and Future Work

This thesis has important limitations. Thought it presentsa formal Flume model, there are no
guarantees that the implementation actually meets the model. Even if it did, Flume is suscep-
tible to covert channels, such astiming channels, quota-exhausting channels, wallbanging, etc.
Though Flume is simpler in its mathematics and specifications than some other recent IFC sys-
tems, it is still significantly more complicated at this stage than standard Unix. Indeed, Flume
can run atop a Linux system and coexist with many legacy applications, but not all Unix system
calls fit the DIFC model, and hence, Flume’s support of standard APIs is approximate at best.
Similarly, not all of FlumeWiki’s features work; some are fundamentally at odds with DIFC
guarantees (e.g., hit counters; see Section 8.9).

Other techniques might also solve some of the same problems but with less overhead. Some
design paths considered but not taken are: building DIFC into a runtime (like Python’s) rather
that into the operating system; protecting programmers against their own bugs rather than gener-
alizing to the more prickly defense against malicious code;a language-based approach like Jif’s
with finer-grained labeling.



25

Chapter 10 discusses these limitations as well as the more positive outcomes of the Flume
experience: lessons gleaned, ideas about programmabilityand practicality, and some projections
for future projects. The end goal of this research is to buildsecure and extensible server-based
computing platforms. We discuss how Flume has fared in that endeavor, and what work remains.



26



Chapter 2

Related Work

Attacks against Web services have kept security researchers busy. In answer the bonanza of
weaknesses that dog Web-based system today (surveyed in Section 1.1), a similarly diverse set
of solutions has sprung up.

2.1 Securing the Web

Securing the Channel Many proposals exist to combat phishing, some using browser-based
heuristics [13], others using mobiles phones as a second authentication factor [75]. In general,
no solution has found either widespread acceptance or adoption, and indeed phishing promises
to be an important problem for years to come. We offer no solution in this thesis but believe the
problem is orthogonal to those we consider.

As hardware manufacturers continue to expand the computingresources available to applica-
tions (even with dedicated cores for cryptography), SSL channel protection should become avail-
able to more Web sites. And improved user interfaces [84] anddedicated infrastructure [107]
has taken aim at attacks that attempt to distribute bogus SSLcertificates.

Securing the Browser As for browser-based attacks, such as XSS, XSRF, and drive-by down-
loads, the most obvious solutions involve better sanitization on the server-side, using packages
like HTML purify [110]. Of course, servers cannot sanitize HTML in iframes they did not
create and cannot modify (like third party advertisements), and with current technology are at
the mercy of those third parties to provide adequate security protections. Research work like
MashupOS gives the browser finer-grained control over its own security, at the cost of back-
wards compatibility [105].

Securing the Server As for the server-side, over time, system administrators have developed
practices to mitigate the risks of well-understood attacks, such as data-center firewalls, and two-
factor authentication for administrators [93]. Administrators can apply security patches to close

27



28

holes in services that listen on network ports, and holes in the kernel that allow privilege escala-
tion [3].

The remaining issue is one of the most challenging, and the subject of this thesis: how to
secure the custom-written server-side software that makesthe Web site work while upholding a
desired security policy. Webapplicationcode is mushrooming, especially as new toolkits (e.g.
Ruby on Rails [97] and Django [30]) open up Web programming toan ever-larger pool of de-
velopers, many of whom are not well-versed in secure programming principles. The question
becomes, what tools should the underlying infrastructure (be it the operating system, compilers
or interpreters) give application developers to help them write secure code? And can these tech-
niques apply to Facebook-like architectures, in which unvetted third party developers contribute
application code?

One vein of work in this direction is backwards-compatible security improvements to stock
operating systems and existing applications, such as: buffer overrun protection (e.g., [14, 55]),
system call interposition (e.g., [34, 49, 80, 32, 102]), isolation techniques (e.g., [35, 51]) and vir-
tual machines (e.g., [37, 104, 108]). Flume uses some of these techniques for its implementation
(e.g., LSMs [109] and systrace [80]). Few if any of these techniques, however, would pro-
tect against bugs high up in the Web software application stack (say in MoinMoin code). That
is, many exploitable Web applications behave normally fromthe perspective of buffer-overrun
analysis or system call interposition, even as they send Alice’s data to Bob’s network connection,
against Alice’s wishes. This thesis instead explores deeper changes to the API between (Web)
applications and the kernel, allowing applications to express high-level policies, and kernel in-
frastructure to uphold them. This approach is heavily influenced by previous work in mandatory
access control (MAC).

2.2 Mandatory Access Control (MAC)

Mandatory access control (MAC) [91] refers to a system security plan in which security policies
aremandatoryand not enforced at the discretion of the application writers. In many such sys-
tems, software components may be allowed to read private data but are forbidden from revealing
it. Traditional MAC systems intend that an administrator set a single system-wide policy. When
servers run multiple third-party applications, however, administrators cannot understand every
application’s detailed security logic. Decentralized information flow control (DIFC) promises
to support such situations better than most MAC mechanisms,because it partially delegates the
setting of policy to the individual applications.

Bell and LaPadula describe an early mathematical model for MAC [4] and an implementa-
tion on Multics [5]. Their work expresses two succinct rulesthat capture the essence of manda-
tory security. The first is the simple security property, or “no read-up:” that when a “subject”
(like an active process) “observes” (i.e. reads) an “object” (like a static file), the subject’s secu-
rity label must “dominate” (i.e. be greater than) that of theobject. The second is the*-property,
or “no write-down:” that a subject’s label must dominate thelabel of any object that it influences.
Biba noted that similar techniques also apply to integrity [7]. Denning concurrently expressed
MAC ideas in terms of mathematical lattices [17] but advocated a compile-time rather than run-



29

time approach, for fear of covert channels (see Section 3.4).
SELinux [62] and TrustedBSD [106] are recent examples of stock operating systems modi-

fied to support many MAC policies. They include interfaces for a security officer to dynamically
insert security policies into the kernel, which then limit the behavior of kernel abstractions like
inodes and tasks [98]. Flume, like SELinux, uses the Linux security module (LSM) framework
in its implementation [109]. However, SELinux and TrustedBSD do not allow untrusted appli-
cations to define and update security policies (as in DIFC). If SELinux and TrustedBSD were to
provide such an API, they would need to address the challenges considered in this thesis.

TightLip [111] implements a specialized form of IFC that prevents privacy leaks in legacy
applications. TightLip users tag their private data and TightLip prevents that private data from
leaving the system via untrusted processes. Like TightLip,Flume can also be used to prevent
privacy leaks. Unlike TightLip, Flume and other DIFC systems (e.g. Asbestos and HiStar)
support multiple security classes, which enable safe commingling of private data and security
policies other than privacy protection.

IX [66] and LOMAC [31] add information flow control to Unix, but again with support for
only centralized policy decisions. Flume faces some of the same Unix-related problems as these
systems, such as shared file descriptors that become storagechannels.

2.3 Specialized DIFC Kernels

One line of DIFC research, taken by the Asbestos [9, 21] and HiStar [113] projects, is to re-
place a standard kernel with a new security kernel, then build up, eventually exposing DIFC to
applications.

Asbestos applies labels at the granularity of unreliable messages between processes, while
HiStar’s interface is at a lower level (that of threads, memory segments and control-transfer
“gates”). Flume’s labels are influenced by Asbestos’s and incorporate HiStar’s improvement that
threads must explicitly request label changes (since implicit label changes are covert channels).
Asbestos and HiStar labels combine mechanisms for privacy,integrity, authentication, declassi-
fication privilege, and port send rights. Flume separates (or eliminates) these mechanisms in a
way that is intended to be easier to understand and use.

The HiStar project in particular has succeeded in exposing astandard system call interface
to applications, so that some applications work on HiStar asthey would under standard Unix.
HiStar implements an untrusted, user-level Unix emulationlayer using DIFC-controlled low-
level kernel primitives. A process that uses the Unix emulation layer but needs control over the
DIFC policy would have to understand and manipulate the mapping between Unix abstractions
and HiStar objects. The complication with the HiStar approach, however, is that the specifics
for managing information flow are hidden deep in the system library. If a legacy application
component (such as a Web server, a Web library, or an off-the-shelf Web application) causes a
security violation when run on HiStar’s library, it would bedifficult to refactor the application
to solve the problem. Such controls could be factored into a new library, and this thesis answers
the question of what such a library might look like.

As new operating systems, Asbestos and HiStar have smaller TCBs than Flume, and can



30

tailor their APIs to work well with DIFC. However, they don’tautomatically benefit from main-
stream operating systems’ frequent updates, such as new hardware support and kernel improve-
ments.

2.4 Language-Based Techniques

DIFC originated as a programming languages technique. Myers and Liskov introduced a de-
centralized information model [69], thereby relaxing the restriction in previous information flow
control systems that only a security officer could declassify. JFlow and its successor Jif are Java-
based programming languages that enforce DIFC within a program, providing finer-grained con-
trol than Flume [70]. In Jif, the programmer annotates variable declarations, function parameters,
function return values, structure members, etc., to describe what type of secrecy and integrity that
data ought to have. The compiler then type-checks the program to ensure that it does not move
data between incompatible secrecy and integrity categories. In such a system, declassifiers are
class methods (rather than processes). Programs that type-check and have correct declassifiers
are believed to be secure.

There are several benefits to this approach. First, securitylabels can apply to data elements as
small as a byte, whereas in operating system-based techniques, the smallest labeled granularity
is a process (in the case of Asbestos and Flume) or thread (in the case of HiStar). Second,
Jif can limit declassification privileges to specific function(s) within a process, rather than (as
with Flume) to the entire process. Jif programs can also run on legacy operating systems, and
some work has shown how Jif’s computations can be split across multiple processes and/or
machines [112]. Swift, based on Jif, focuses on splitting Web applications between the server
and browser. The technique is to write an application in Jif,and then automated tools generate
server-side Java and client-side JavaScript that uphold the intended security policy [11].

On the other hand, Jif requires applications (such as Web services [12] and mail systems [44])
to be rewritten while Flume provides better support for applying DIFC to existing software.
OS-based approaches can also accommodate dynamically typed scripting languages like Perl,
Python, PHP, Ruby, and even shell scripting. These languages are exactly the ones that many
programmers call upon when developing Web applications. Finally, language-based approaches
like Jif still depend upon the underlying operating system for access to the file system, network,
and other resources available through the system call interface. As Hicks et al. point out, the
Jif work is indeed complementary to progress in mandatory access control for the operating
system [45].

2.5 Capabilities Systems

Capabilitiessystems propose another technique for securing kernels andhigher level applica-
tions. In their seminal work on the “principle of least privilege” [91], Saltzer and Schroeder
argue that processes should possess as few privileges as possible when performing their task;
in the case of compromise, such processes are less useful to attackers than those that own many



31

privileges they do not require. By contrast, operating systems like Linux and Windows implicitly
grant all manner of privileges (i.e., capabilities) to applications, which often misuse them due to
bugs or misconfiguration [43]. For example, if Alice runs Solitaire on Windows, the program
can “scan [her] email for interesting tidbits and them on eBay to the highest bidder” [67]. Ca-
pabilities systems like KeyKOS [53], ErOS [96] and CoyotOS [95] require processes to request,
grant and manage these privileges (i.e. capabilities) explicitly. The assumption is that if kernel
components and/or applications must more carefully managetheir capabilities to complete their
tasks, they are less likely to request (and lose control of) capabilities they do not need.

The core idea behind capability systems—that system resources are individually addressable
and accessible via capabilities—does not solve the problemexplored in this thesis. Imagine
building a Web-based application like MoinMoin with capabilities. When Alice logs onto the
system, an instance of MoinMoin launches with Alice’s read and write capabilities, meaning it
can read and write those files belonging to Alice. But such an application can also copy Alice’s
data to a temporarily, world-readable file in the Wiki namespace, allowing Bob to later access
it. In other words, capability-based policies do not, in andof themselves, capture the transitivity
of influence that MAC systems do: they do not track Alice’s data through the Wiki code to the
world-readable file.

There is, however, an historical confluence between capability and MAC systems. Capa-
bility systems like KeyKOS have succeeded in implementing MAC policies as a policy in a
reference monitor on top of a capabilities-based kernel. Conversely, the capabilities literature
has influenced some variants of MAC like Asbestos [21] (described above). These system have
a default security policy as in Bell-LaPadula, but processes that hold the appropriate capabilities
are permitted to alter this policy. Thus, MAC and capabilities prove complementary.



32



Chapter 3

The Flume Model For DIFC

The Flume Model for DIFC describes an interface between an operating system kernel and
user-space applications. Like typical OS models, Flume’s assumes a trust division between
the kernel and applications: that the kernel ought be correct and bug free; and that the kernel
can defang buggy or malicious user-space applications. Like MAC models (see Section 2.2),
Flume’s requires that the kernel track sensitive information flow through an arbitrary network of
user-space applications. As indecentralizedinformation flow control, the Flume model permits
some (but not all) of those applications to act as declassifiers, selectively disclosing sensitive
information.

This chapterinformally specifies Flume’s DIFC model, describing how it answers the chal-
lenges listed in Section 1.3. In particular:

• programming language agnosticism, in answer to Challenge 1;

• simplicity, in answer to Challenge 4;

• and mitigation of covert channels, in answer to Challenge 5.

We defer a discussion of to Challenges 2 and 3 (compatibilitywith Unix primitives) to Chap-
ter 6.

3.1 Tags and Labels

Flume usestagsand labels to track data as it flows through a system. LetT be a very large
set of opaque tokens calledtags. A tag t carries no inherent meaning, but processes generally
associate each tag with some category of secrecy or integrity. Tagb, for example, might label
Bob’s private data.

Labelsare subsets ofT . Labels form a lattice under the partial order of the subset rela-
tion [17]. Each Flume processp has two labels,Sp for secrecy andIp for integrity. Both labels
serve to (1) summarize which types of data have influencedp in the past and (2) regulate where
p can read and write in the future. Consider a processp and a tagt. If t ∈ Sp, then the system

33



34

conservatively assumes thatp has seen some private data tagged witht. In the future,p can read
more private data tagged witht but requires consent from an authority who controlst before it
can reveal any data publicly. If there are multiple tags inSp, thenp requires independent consent
for each tag before writing publicly. Processp’s integrity labelIp serves as a lower bound on the
purity of its influences. Ift ∈ Ip, then every input top has been endorsed as having integrity for
t. To maintain this property going forward, the system only allowsp to read from other sources
that also havet in their integrity labels. Files (and other objects) also have secrecy and integrity
labels; they can be thought of as passive processes.

Although any tag can appear in any type of label, in practice secrecy and integrity use pat-
terns are so different that a tag is usedeither in secrecy labelsor in integrity labels, not both. We
therefore sometimes refer to a “secrecy tag” or an “integrity tag”.

Example: Secrecy Alice and Bob share access to a server but wish to keep some files (but
not all) secret from each other. Misbehaving software can complicate even this basic policy; for
example, Bob might download a text editor that, as a side effect, posts his secret files to a public
Web site, or writes them to a public file in/tmp. Under the typical OS security plan, Bob can
only convince himself that the text editor won’t reveal his data if he (or someone he trusts) audits
the software and all of its libraries.

With information flow control, Bob can reason about the editor’s (mis)behavior without au-
diting its code. Say that tagb represents Bob’s secret data. As described below, Bob explicitly
trusts some processes to export his data out of the system. For now, consider all other (i.e.un-
trusted) processes, like the text editor. The following four properties suffice to protect Bob’s
data. For any processp:

1. if p reads his secret files, thenb ∈ Sp;

2. p with b ∈ Sp can only write to other processes (and files)q with b ∈ Sq

3. Any untrusted processp cannot removeb from Sp

4. p with b ∈ Sp cannot write over the network (or to any other destinations outside the
system).

If all four conditions hold, then a simple inductive argument shows that the editor cannot leak
Bob’s data from the system.

Example: Integrity A complementary policy involves integrity: how to prevent untrustwor-
thy software from corrupting important files. Say Charlie has administrator privilege on his
machine, allowing him to edit sensitive files (e.g.,/etc/rc, the script that controls which pro-
cesses run with superuser privileges when a machine boots up). However, other users constantly
update libraries and download new software, so Charlie lacks confidence that all editors on the
system will faithfully execute his intentions when he edits/etc/rc. A path misconfiguration
might lead Charlie to access a malicious editor that shares aname with a responsible editor, or a



35

good editor that links at runtime against phony libraries (perhaps due to anLD LIBRARY PATH
misconfiguration).

Secrecy protection won’t help Charlie; rather, he needs an end-to-end guarantee thatall files
read when editing/etc/rc are uncorrupted. Only under these integrity constraints should the
system allow modifications to the file. Say that an integrity tagv represents data that is “vendor-
certified.” As described below, some processes on the systemcanendorsefiles and processes,
giving them integrityv. For now, consider all other processes, like the text editor. Charlie seeks
four guarantees for each such processp:

1. if p modifies/etc/rc thenv ∈ Ip;

2. a processp with v ∈ Ip cannot read from files or processes that lackv integrity, and only
uncorrupted files (like binaries and libraries) havev integrity;

3. a processp cannot addv to Ip;

4. andp with v ∈ Ip cannot accept input from uncontrolled channels (like the network).

If all four conditions hold, Charlie knows that changes to/etc/rc were mediated by an un-
corrupted editor.

3.2 Decentralized Privilege

Decentralized IFC (DIFC) is a relaxation of centralized (or“traditional”) IFC. In centralized
IFC, only a trusted “security officer” can create new tags, subtract tags from secrecy labels
(declassifyinformation), or add tags to integrity labels (endorseinformation). In Flume DIFC,
any process can create new tags, which gives that process theprivilege to declassify and/or
endorse information for those tags.

3.2.1 Capabilities

Flume represents privilege using twocapabilitiesper tag. Capabilities are objects from the set
O = T ×{−,+}. For tagt, the capabilities aret+ andt−. Each processownsa set of capabilities
Op ⊆ O. A process witht+ ∈ Op ownsthe t+ capability, giving it the privilege to addt to its
labels; and a process witht− ∈ Op can removet from its labels. In terms of secrecy,t+ lets
a process addt to its secrecy label, granting itself the privilege to receive secrett data, while
t− lets it removet from its secrecy label, effectively declassifying any secret t data it has seen.
In terms of integrity,t− lets a process removet from its integrity label, allowing it to receive
low-t-integrity data, whilet+ lets it addt to its integrity label, endorsing the process’s current
state as high-t-integrity. A process that owns botht+ and t− hasdual privilegefor t and can
completely control howt appears in its labels. The setDp where

Dp , {t | t+ ∈ Op ∧ t− ∈ Op}



36

represents all tags for whichp has dual privilege.
Any process can allocate a tag. Tag allocation yields a randomly-selected tagt ∈ T and sets

Op ← Op∪{t
+, t−}, grantingp dual privilege fort. Thus, tag allocation exposes no information

about system state.

3.2.2 Global Capabilities

Flume also supports aglobal capability setÔ. Every process has access to every capability in
Ô, useful for implementing key security policies (describedin Section 3.2.3).

A processp’s effective set of capabilities is given by:

Ōp , Op ∪ Ô

Similarly, its effective set of dual privileges is given by:

D̄p , {t | t+ ∈ Ōp ∧ t− ∈ Ōp}

Tag allocation can updatêO; an allocation parameter determines whether the new tag’st+, t−,
or neither is added tôO (and thus to every current and future process’sŌp).

Lest processes manipulate the shared setÔ to leak data, Flume must control it carefully. A
first restriction is that processes can only add tags toÔ when allocating tags. If Flume allowed
arbitrary additions toÔ, a processp could leak information to a processq by either adding
or refraining from adding a pre-specified tag tôO. A second restriction is that no processp
can enumeratêO or Ōp. If Flume allowed enumeration,p could poll ‖ Ô ‖ while q allocated
new tags, allowingq to communicate bits top. Processes can, however, enumerate their non-
global capabilities (those inOp), since they do not share this resource with other processes. See
Chapter 4 for a formal treatment of potential pitfalls induced byÔ.

Two processes can transfer capabilities so long as they can communicate. A process can
freely drop non-global capabilities (though we add a restriction in Section 6.2). And finally,
some notation for manipulating sets of capabilities: for a set of capabilitiesO ⊆ O, we define:

O+ , {t | t+ ∈ O}

O− , {t | t− ∈ O}

3.2.3 Examples and Policies

Secrecy Bob can maintain the secrecy of his private data with a policycalledexport protection.
One of Bob’s processes allocates the secrecy tagb used to mark his private data; during the
allocation,b+ is added toÔ, but only the allocating trusted process getsb−. Thus, any process
p can addb to Sp and therefore readb-secret data, but only processes that ownb− (i.e., Bob’s
trusted process and its delegates) can declassify this dataand export it out of the system. (We
describe how to createb-secret data below.)

A related but more stringent policy is calledread protection. A process allocates a secrecy



37

tag t, but neithert+ nor t− is added toÔ. By controlling t+, the allocating process can limit
which other processes canview t-secret data, as well as limiting which other processes can
declassifyt-secret data. Read-protection is useful for protecting short and very sensitive secrets,
like passwords. That is, if Alice thinks that her system has some low-capacity covert channels,
she must concede that Bob can leak her export-protected out of the system, if given the time and
resources. But Bob cannot see her read-protected data in thefirst place, and thus, it is better
protected against covert channels (including timing channels) [113].

Integrity Another policy,integrity protection, is suitable for our integrity example. A “certi-
fier” process allocates integrity tagv, and during the allocation,v− is added toÔ. Now, anyp
process canremovev from Ip, but only the certifier hasv+. The ability to addv to an integrity
label—and thus to endorse information as high-v-integrity—is tightly controlled by the certifier.
Charlie requests of the certifier to edit/etc/rc using an editor of his choice. The certifier
forks, creating a new process withv integrity; the child drops thev+ capability and attempts to
execute Charlie’s chosen editor. Withv ∈ Ip andv+ 6∈ Ōp, the editor process can only read
high-integrity files (be they binaries, libraries, or configuration files) and therefore cannot come
under corrupting influences.

These three policies—export protection, read protection,and integrity protection—enumerate
the common uses for tags, although others are possible.

3.3 Security

The Flume model assumes many processes running on the same machine and communicating
via messages, or “flows”. The model’s goal is to track data flowby regulating both process
communication and process label changes.

Definition1 (Security in the Flume model). A system is secure in the Flume model if and only if
all allowed process label changes are “safe” (Definition 2) and all allowed messages are “safe”
(Definition 3).

We define “safe” label changes and messages below. Though many systems might fit this general
model, we focus on the Flume system in particular in Section 6.

Safe Label Changes In the Flume model (as in HiStar), only processp itself can change
Sp andIp, and must request such a change explicitly. Other models allow a process’s label to
change as the result of receiving a message [21, 31, 66], but implicit label changes turn the labels
themselves into covert channels [17, 113] (see Section 3.4). When a process requests a change,
only those label changes permitted by a process’s capabilities are safe:

Definition2 (Safe label change). For a processp, let L beSp or Ip, and letL′ be the new value
of the label. The change fromL to L′ is safeif and only if:

L′ − L ⊆ (Ōp)
+ and L− L′ ⊆ (Ōp)

−



38

Web App Declassifier Web Server

S= {t}
D̄ = {}

S= {?}
D̄ = {t}

S= {}
D̄ = {}

Figure 3-1: An example Web system; what should the declassifier’s label be?

For example, say processp wishes to subtract tagt from Sp, to achieve a new secrecy label
S′

p. In set notation,t ∈ Sp − S′
p, and such a transition is only safe ifp owns the subtraction

capability fort (i.e. t− ∈ Op). The same logic holds for addition, yielding the above formula.

3.3.1 Safe Messages

Information flow control restricts process communication to prevent data leaks. The Flume
model restricts communication among unprivileged processes as in traditional IFC:p can send a
message toq only if Sp ⊆ Sq (“no read up, no write down” [5]) andIq ⊆ Ip (“no read down, no
write up” [7]).

For declassifiers—those processes that hold special privileges—these traditional IFC rules
are too restrictive. Consider Figure 3-1 for example. In this simple example, a Web application
runs with secrecyS = {t}, meaning it can read and compute on data tagged with secrecyt.
Since the application is unprivileged (D̄ = {}), it cannot export this data on its own; it relies on
the privileged declassifier (̄D = {t}) on its right to do so. If the declassifier decides to declassify,
it sends the data out to the network via the Web server, which runs with an empty secrecy label.
Thus, data can flow in this example from high (S = {t}) to low (S = {}) with the help of the
declassifier in the middle.

The question becomes, what should the declassifier’s secrecy label be? One idea is for the
declassifier to explicitly switch betweenS = {} andS = {t}, as it communicates to its left
or right. Though this solution sometimes works forsending, it is impractical for asynchronous
receives: the declassifier has no way of knowing when its left or right partner will send, and
therefore cannot make the necessary label change ahead of time. Another idea is that the declas-
sifier run withS = {t} and only lower its label toS = {} when it sends to its right. But this
approach does not generalize—imagine a similar scenario inwhich the Web server runs with
secrecyS = {u} and the declassifier has dual privileges for botht andu. This second approach
is also ungainly for multithreaded declassifiers with blocking I/O operations.

Flume’s solution is a general relaxation of communication rules for processes with privilege,
like declassifiers. Specifically, if two processescould communicate by changing their labels,
sending a message using the traditional IFC rules, and then restoring their original labels, then
the model can safely allow the processes to communicate without label changes. A process can
make such a temporary label change only for tags inD̄p, for which it has dual privilege. A
processp with labelsSp, Ip would get maximum latitude in sending messages if it were to lower
its secrecy toSp − D̄p and raise its integrity toIp ∪ D̄p. It could receive the most messages if it
were to raise secrecy toSp ∪ D̄p and lower integrity toIp − D̄p.



39

The following definition captures thesehypotheticallabel changes to determine what mes-
sages are safe:

Definition3 (Safe message). A message fromp to q is safeiff

Sp − D̄p ⊆ Sq ∪ D̄q and Iq − D̄q ⊆ Ip ∪ D̄p

For processes with no dual privilege (D̄p = D̄q = {}), Definition 3 gives the traditional IFC
definition for safe flows. On the other hand, ifp must send with a hypothetical secrecy label of
Sp − D̄p, thenp is declassifying the data it sends toq. If q must receive with secrecySq ∪ D̄q,
then it is declassifying the data it received fromp. In terms of integrity, ifp must use an integrity
label Ip ∪ D̄p, then it is endorsing the data sent, and similarly,q is endorsing the data received
with integrity labelIq − D̄q.1

This definition of message safety might raise fears ofimplicit declassification. A process
p with a non-emptyDp is alwaysdeclassifying (or endorsing) as it sends or receives messages,
whether it intends to or not. The capabilities literature strongly discourages such behavior, claim-
ing that implicit privilege exercise inevitably results in“confused deputy problems,” in which
attackers exploit honest applications’ unintended use of privileges [43]. In defining the Flume
model, we present rules that make communication as permissive as possible without leaking
data. Chapter 6 describes how the Flume implementation avoids the confused deputy problem,
requiring applications to explicitly declassify (and endorse) data as they send and receive.

3.3.2 External Sinks and Sources

Any data sink or source outside of Flume’s control, such as a remote host, the user’s terminal, a
printer, and so forth, is modeled as an unprivileged processx with permanently empty secrecy
and integrity labels:Sx = Ix = {} and alsoOx = {}. As a result, a processp can only write to
the network or console if it could reduce its secrecy label to{} (the only label withSp ⊆ Sx),
and a process can only read from the network or keyboard if it could reduce its integrity label to
{} (the only label withIx ⊆ Ip).

3.3.3 Objects

Objects such as files and directories are modeled as processes with empty ownership sets, and
with immutablesecrecy and integrity labels, fixed at object creation. A processp’s write to an
objecto then becomes a flow fromp to o; reading is a flow sent fromo to p. When a processp
creates an objecto, p specifieso’s labels, subject to the restriction thatp must be able to write
to o. In many cases,p must also update some referring object (e.g., a process writes a directory
when creating a file), and writes to the referrer must obey thenormal rules.

1Declassification or endorsement can also occur when a process p makes actual (rather than hypothetical) label
changes toSp or Ip, respectively. See Section 3.3.



40

3.3.4 Examples

Secrecy We now can see how the Flume model enforces our examples’ security requirements.
In the editor example, Bob requires that all untrusted processes like his editor (i.e., thosep for
which b− /∈ Ōp) meet the four stated requirements from Section 3.1. In the logic below, recall
that b is an export-protect tag; thereforeb+ ∈ Ô and alsob− /∈ Ô. For unprivileged processes
like Bob’s editor:b− /∈ Ōp, and thusb /∈ D̄p.

1. If processp reads Bob’s secret files, thenb ∈ Sp: Bob’s secret files are modeled as objects
f with b ∈ Sf . Sinceb+ ∈ Ô, any process can write such files. Reading an object
is modeled as an information flow fromf to p, which requires thatSf ⊆ Sp ∪ D̄p by
Definition 3. Sinceb ∈ Sf , andb /∈ D̄p, it follows thatb ∈ Sp.

2. Processp with b ∈ Sp can only write to other processes (or files)q with b ∈ Sq: If a
processp with b ∈ Sp successfully sends a message to a processq, then by Definition 3,
Sp − D̄p ⊆ Sq ∪ D̄q. Sinceb is in neitherD̄p nor D̄q, thenb ∈ Sq.

3. Processes cannot dropb from Sp: The process that allocatedb kept b− private, so by
Definition 2, only those processes that ownb− can dropb from their secrecy labels.

4. Processp with b ∈ Sp cannot transmit information over uncontrolled channels: An un-
controlled channelx has secrecy label{}, so by Definition 3, processp can only transmit
information tox if it owns b−, which it does not.

Note that sinceb+ ∈ Ô, any process (like the editor) can addb to its secrecy label. Such a process
p can read Bob’s files, compute arbitrarily, and write the resulting data to files or processes that
also haveb in their secrecy labels. But it cannot export Bob’s secrets from the system. Of course
if p ownedb− or could coerce a process that did, Bob’s security could be compromised. Similar
arguments hold for the integrity example.

Shared Secrets The power of decentralized IFC lets Flume users combine their private data
in interesting ways without leaking information. Imagine asimple calendar application where
all system users keep private data files describing their schedules. A user such as Bob can
schedule a meeting with Alice by running a program that examines his calendar file and hers,
and then writes a message to Alice with possible meeting times. When Alice gets the message,
she responds with her selection. Such an exchange should reveal only what Bob and Alice
chose to reveal (candidate times, and the final time, respectively) and nothing more about their
calendars. Alice and Bob both export-protect their calendar files with a andb respectively. To
reveal to Alice a portion of his calendar, Bob launches a processp with labelsSp = {a, b} and
Op = {b−}. This process can read both calendar files, find possible meeting times, lower itsSp

label to{a}, and then write the candidate times to a filef labeledSf = {a}. Thoughf contains
information about both Alice and Bob’s calendars, only Alice’s programs can export it—and
specifically, software running as “Bob” cannot export it (since it contains Alice’s private data).
When Alice logs on, she can use a similar protocol to read Bob’s suggestions, choose one, and



41

p
0110

q
0000

q1

q2

q3

q4

Sp = {t} Sq = {}

Sq2 = {}

Sq3 = {}

Sq1 = {}

Sq4 = {}

Figure 3-2: The “leaking” system initializes.

export that choice to Bob in a fileg labeledSg = {b}. Because at least one of Alice’s or Bob’s
export-protection tag protects all data involved with the exchange, other users like Charlie can
learn nothing from it.

3.4 Covert Channels in Dynamic Label Systems

As described in Section 3.3, processes in Flume change theirlabels explicitly; labels do not
change implicitly upon message receipt, as they do in Asbestos [21] or IX [66]. We show by
example why implicit label changes (also known as“floating”labels) enable high-throughput
information leaks.

Consider a processp with Sp = {t} and a processq with Sq = {}, both with empty own-
ership sets. In a floating label system like Asbestos,p can send a message toq, and q will
successfully receive it, but only after the kernel raisesSq = {t}. Thus, the kernel can track
which processes have seen secrets tagged witht, even if those processes are uncooperative. Of
course, such a scheme introduces new problems: what if a processq doesn’t want its label to
change fromSq = {}? For this reason, Asbestos also introduces “receive labels,” which serve
to filter out incoming traffic to a process, allowing it to avoid unwanted label changes.

The problem with floating is best seen through example (c.f.,Figures 3-2 through 3-4). Imag-
ine processesp andq as above, withp wanting to leak the 4-bit secret “0110” to q. The goal is
for p to convey these bits toq without q’s label changing. Figure 3-2 shows the initialization.q
launches 4 helper processes (q1 throughq4), each with a label initialized toSqi

= {}. q’s version
of the secret starts out initialized to all0s, but it will overwrite some of those bits during the
attack.

Nextp communicates selected bits of the secret to the helperqis. If theith bit of the message
is equal to0, thenp sends the message “0” to the processqi. If the ith bit of the message is1, p
does nothing. Figure 3-3 shows this step. Note that as a result of receiving these0 bits, q1 and
q4 have changed labels! Their labels floated up from{} to {t}, as the kernel accounts for how
information flowed in the system.



42

p
0110

q
0000

q1

q2

q3

q4

Sp = {t} Sq = {}

Sq2 = {}

Sq3 = {}

Sq1 = {t}

Sq4 = {t}

0

0

Figure 3-3:p sends a “0” to qi if the ith bit of the message is0.

p
0110

q
0110

q1

q2

q3

q4

Sp = {t} Sq = {}

Sq2 = {}

Sq3 = {}

Sq1 = {t}

Sq4 = {t}

1

1

Figure 3-4: Ifqi did not receive a “0” before the timeout, it assumes an implicit “1” and writes
“1” to q at positioni.



43

In the last step (Figure 3-4), theqi processes wait for a predefined time limit before giving
up. At the timeout, those who have not received messages (q2 andq3) write a1 to theq, at the
bit position that corresponds to their process ID. Soq2 writes a1 at bit position 2, andq3 writes
a1 at bit position 3. Note thatq1 andq4 do not write toq, nor could they without affectingq’s
label. Now,q has the exact secret, copied bit-for-bit fromp. This example shows 4 bits of data
leak, but by forkingn processes,p andq can leakn bits per timeout period. Because Asbestos’s
event processabstraction makes forking very fast, this channel on Asbestos can leak kilobits of
data per second.

What went wrong? Denning’s paper from 1976 [17] identifies the issue:

There is one intrinsic problem with dynamic updating mechanisms: a change in an
object’s class may remove that object from the purview of a user whose clearance
no longer permits access to the object. The class-change event can thereby be used
to leak information, e.g., by removing from the user’s purview a file meaning “0.”

Here, processesq1 and q4 disappeared fromq’s view. Their absence means the first and the
fourth bit stay at0 and therefore reflect the original secret.

Consider the behaviors of theqi processes to see why this particular attack would fail against
the Flume system. At the step depicted in Figure 3-3, theqi’s must each make a decision: should
they change their labels toSqi

= {}, or should they leave their labels as is? Ifqi changes, then
it will receive messages fromp, but it won’t be able to write toq. If qi does not change, then
it will never receive a message fromp. Thus, its decision to write a1 or not write at all has
nothing to do withp’s message, and only to do with whether or not it decided to change labels,
which it must dobeforereceiving word fromp. Thus, Flume appears secure against attacks that
succeeds in Asbestos’s floating label system. The next two chapters seek a formal proof of these
intuitions.

3.5 Summary

This chapter informally specified the Flume Model for operating-systems level decentralized
information flow control. The emphasis was on a labeling system that allows the kernel to track
data throughout a system (whether for security or integrityguarantees) while assigning certain
processes (declassifiers and endorsers) the privileges to legislate security policies. As in HiStar’s
Model, a key idea in Flume is that processes must set their labels explicitly, rather than labels
floating dynamically as messages arrive. An important example shows the advantages of Flume’s
approach.



44



Chapter 4

The Formal Flume Model

In the previous chapter, an example attack on an Asbestos-like system showed an inherent weak-
ness in the “floating” style of labels: with a careful processarrangement, an attacker can leak
many bits of information by selectively sending or withholding communication. The same at-
tack appeared to fail against the Flume model, but no formal reasoning proved that other attacks
could not succeed. This chapter and the next seek a formal separation between the Asbestos style
of “floating” labels and the Flume style of “explicitly specified” labels. The ultimate goal is to
prove that Flume exhibitsnon-interferenceproperties: for example, that processes with empty
ownership and whose secrecy label containst cannot in any way alter the execution of those
processes with empty labels. Such a non-interference result requires a formal model of Flume,
which we build up here. Chapter 5 provides the proof that the Flume Model meets a standard
definition of non-interference with high probability.

We present a formal model for the Flume System in the Communicating Sequential Pro-
cesses (CSP) process algebra [46], with timing extensions [83]. The model captures a kernel, a
system call interface, and arbitrary user processes that can interact via the system call interface.
The model expresses processes communicating with one another over IPC, changing labels, al-
locating tags, and forking new processes. In other words, the model serves as a high-level design
document for kernel implementers, dictating which kernel details are safe to expose to user-level
applications, where I/O can safely happen, which return codes from system calls to provide,
etc. Formal techniques can then show that the system call APIitself cannot be exploited to leak
information (as in Section 3.4’s attack on Asbestos). The model does not capture lower-level
hardware details, like CPU, cache, memory, network or disk usage. Therefore, it is powerless to
disprove the existence of covert channels that modulate CPU, cache, memory, network or disk
usage to communicate data from one process to another.

Figure 4-1 depicts the Flume model organization. At a high level, the model splits each Unix-
like process running on a system (e.g., a Web server or text editor) into two logical components:
a user-space half (e.g.,Ui andUj) which can take almost any form, and a kernel-space half which
behaves according to a strict state machine (e.g.,i :K andj :K). The user-space half of a process
can communicate to its kernel half, and to other user-space processes via a system call interface.
This interface takes the form of a CSP channel between the twoprocesses (e.g.i.s and j.s).

45



46

Ui Uj

i :K j :K

TAGMGR

i :QUEUES j :QUEUESSWITCH

PROCMGR

i.c j.c

j.si.s

i.g j.g

i.q j.q

i.p j.p

Figure 4-1: Two user-space processes,Ui and Uj , in the CSP model for Flume.i : K and
j : K are the kernel halves of these two processes (respectively), TAGMGRis the process that
manages the global set of tags and associated privileges,PROCMGRmanages the process ID
space, andSWITCHenables all user-visible interprocess communication. Arrows denote CSP
communication channels.

Inside the kernel, the kernel-halves of processes can communicate with one another to deliver
IPCs initiated at user-space. Also inside the kernel, a global process (TAGMGR) manages the
circulation of tags and globally-shared privileges; another global process (PROCMGR) manages
the process ID space. The processSWITCHis involved with communication between user-level
processes. The remainder of this chapter seeks to fill out thedetails of this diagram, first by
reviewing CSP basics, and then by explaining details specific to Flume.

4.1 CSP Basics

Communicating Sequential Processes (CSP) is a process algebra useful in specifying systems as
a set of parallel state machines that sometimes synchronizeon events. We offer a brief review of
it here, taking heavily from Hoare’s book [46]. Among the most basic CSP examples is Hoare’s
vending machine:

VMS= in25 → choc→ VMS

This vending machine waits for the eventin25, which corresponds to the input of a quarter into
the machine. Next, it accepts the eventchoc, which corresponds to a chocolate falling out of the
machine. Then it returns to the original state, with a recursive call to itself. The basic operator at
use here is the prefix operator. Ifx is an event, andP is a process, then(x → P ), pronounced
“x thenP ,” represents a process that engages in eventx then behaves like processP . For a
processP , the notationαP describes the “alphabet” ofP . It is a set of all of the events thatP is
ever willing to engage in. For example,αVMS= {in25, choc}.

For any CSP processP , we can discuss the “trace” of events thatP will accept. For theVMS



47

example, various traces include:

〈〉

〈in25〉

〈in25, choc〉

〈in25, choc, in25, choc, in25〉

The next important operator is “choice,” denoted by “|”. If x andy are distinct events, then:

(x → P | y → Q)

denotes a process that acceptsx and then behaves likeP or acceptsy and then behaves likeQ.
For example, a new vending machine can accept either a coin and output a chocolate, or accept
a bill and output an ice cream cone:

VMS2= (bill → cone→ VMS2 | in25 → choc→ VMS2)

CSP offers more general choice function (for choosing between many inputs succinctly), but the
Flume model only requires simple choice.

Related to simple choice are “internal nondeterministic choice” and “external nondetermin-
istic choice,” denoted “⊓” and “�” respectively. In simple choice, the machine reacts exactly
to events it fields from the machine’s user. In nondeterministic choice, the machine behaves
unpredictably from the perspective of the user, maybe because the machine’s description is un-
derspecified, or maybe because the machine is picking from a random number generator. For
instance, a change machine might return coins in any order, depending on how the machine was
last serviced:

CHNG= (in25 → (out10→ out10→ out5→ CHNG ⊓

out10→ out5→ out10→ CHNG))

That is, the machine takes as input a quarter, and returns twodimes and a nickel in one of two
orderings. The “external nondeterministic choice” operator has slightly different semantics but
does not appear in Flume’s model.

CSP provides useful predefined processes likeSTOP, the process that accepts no events,
andSKIP, the process that shows a successful termination and then behaves likeSTOP. Other
processes likeDIV, RUN andCHAOSare standard in the literature, but are not required here.

The next class of operators relate to parallelism. The notation:

P ‖
A

Q

denotesP running in parallel withQ, synchronizing on events inA.1 Meaning, a stream of

1Parallelism differs between Hoare’s original CSP formulation and more modern formulations, like Schneider’s.
We use Schneider’s “interface parallelism” in this model.



48

incoming events can be arbitrarily assigned to eitherP or Q, assuming those events are not in
A. However, for events inA, bothP andQ must accept them in synchrony. As an example,
consider the vending machine and the change machine runningin parallel, synchronizing on the
eventin25:

FREELUNCH= VMS ‖
{in25}

CHNG

Possible traces for this new process are the various interleavings of the traces for the two com-
ponent machines that agree on the eventin25. For instance:

〈in25, choc, out10, out10, out5, . . .〉

〈in25, out10, choc, out10, out5, . . .〉

〈in25, out10, out10, choc, out5, . . .〉

〈in25, out10, out10, out5, choc, . . .〉

〈in25, choc, out10, out5, out10, . . .〉

〈in25, out10, choc, out5, out10, . . .〉

〈in25, out10, out5, choc, out10, . . .〉

〈in25, out10, out5, out10, choc, . . .〉

are possible execution paths forFREELUNCH.

Another variation on parallel composition is arbitrary interleaving, denoted:P 9 Q. In
interleaving,P andQ never synchronize, operating independently of one another. P 9 Q is
therefore equivalent toP ‖{} Q, which meansP andQ run in parallel and synchronize on the
empty set.

Processes that run in parallel can communicate with one another overchannels. A typical
channelc can carry various valuesv, denotedc.v. The sending process accepts the eventc!v
while the receiving process accepts the eventc?x, after which stepx is set equal tov. Commu-
nication on a channel only works if the left process is in the send state and the right process is in
the receive state at the same time. If one process is at the communicative state and the other is
not, the ready process waits until its partner becomes ready. In a slight deviation from Hoare’s
semantics, channels here are bidirectional: messages can travel independently in either direction
across a channel. The Flume model uses channels extensively.

The next important CSP feature is “concealment” or “hiding.” For a processP and a set of
symbolsC, the processP\C is P with symbols inC hidden or concealed. The events inC then
become internal transitions, that can happen without otherprocesses being able to observe them.
Concealment can inducedivergence—an infinite sequence of internal transitions. For instance,
the processP = (c → P )\{c} diverges immediately, never to be useful again. The use of
concealment in the Flume model is careful never to induce divergence in this manner.

Concealment enables subroutines (or “subordination” in Hoare’s terminology). For two pro-
cessP andQ such thatαP ⊆ αQ, the new processP � Q is defined as(P ‖ Q)\αP . This
means that the subroutineP is available withinQ, but not visible to the outside world. The
notationp : P � Q means a particular instancep of the subroutineP is available inQ. Then



49

an event such asp!x?y within Q means thatQ is calling subroutinep with argumentx, and that
the return value is placed intoy. Within P , the event?x means receive the argumentx from the
caller, and the event!y means return the resulty to the caller.

A final important language feature is “renaming.” Given a processP , the notationi :P means
a “renaming” ofP with all events prefixed byi. That is, if the eventc!v appears inP , then the
eventi.c!v appears ini :P , wherei.c is the channelc that’s been renamed toi.c. Thus, for any
i 6= j, the alphabets ofi : P andj : P are disjoint:α(i : P ) ∩ α(j : P ) = {}. This concludes
our whirlwind tour of CSP features. We refer the reader to Hoare’s [46], Schneider’s [92] and
Roscoe’s [85] books for many more details.

4.2 System Call Interface

We now return to our definition of the Flume CSP model. At a highlevel, user-level processes
communicate with the kernel and each either through a system-call interface. Each user-level
processUi has access to the following calls over its channeli.s:

• t← create tag(which)

Allocate a new tag (t), and depending on the parameterwhich, make the associated capa-
bilities for thatt globally accessible. Thus,whichcan be one ofNone, Remove or Add.
For Remove, addt− to Ô, essentially granting it to all other processes; forAdd, addt+

to Ô. whichcannot specify bothRemove andAdd at once.

• rc← change label(which, L)

Change the process’swhich label toL. ReturnOk on success andError on failure.which
can be eitherSecrecy or Integrity.

• L← get label(which)

Read this process’s own label out of the kernel’s data structures. which can be either
Secrecy or Integrity, controlling which label is read.

• O ← get caps()

Read this process’s ownership set out of the kernel’s data structures.

• r ← send(j, msg,X)

Send messagemsgand capabilitiesX to processj. Report success if the sender owns
the capabilities contained inX and false otherwise. Thus, success is reported even if the
message send failed due to label checks.

• (msg,X)← recv(j)

Receive messagemsgand capabilitiesX from processj. Block until a message is ready.



50

• Y ← select(t,X)

Given a set of process indicesX, return a setY ⊆ X. For allj ∈ Y , calling recv(j) will
yield immediate results. This call will block untilY is non-empty, or untilt clock ticks
expire.

• j ← fork()

Fork the current process; yield a processj. fork returnsj in the parent process and 0 in
the child process.

• i← getpid()

Returni, the ID of the current process.

• drop caps(X)

SetOi ← Oi −X.

The Flume model places no restrictions on what the user portions of processes can do
other than: (1) such processes cannot communicate with eachother; and (2) they can only
communicate with the kernel via the proscribed system call interface. Formally, letCi =
{c | (c.v) ∈ αUi} be the set of channels thatUi has. For instance,i.s ∈ Ci where i.s is
the channel that processi uses to make system calls into the kernel. The first requirement onUi

is that for allj 6= i, Ci∩Cj = {}. That is, no processUi can communicate directly with another
processUj. Also, processi cannot tamper with the system call interface of any other process
j, meaningj.s /∈ Ci for all j, j 6= i. Finally, each kernel processj : K has four other chan-
nels,{j.b, j.g, j.c, j.p}, all discussed below. No user process can access any of thesechannels
directly. That is, for alli, j:

{j.b., j.g., j.c, j.p} ∩ Ci = {}

Of course,Ci is not empty. For alli, i.s ∈ Ci, wherei.s is Ui’s dedicated channel for sending
system calls to the kernel and receiving replies.Ci can also contain channels from the process
Ui to itself.

4.3 Kernel Processes

For each user processUi, there is an instantiation of the kernel processK that obeys a strict state
machine. We apply CSP’s standard technique for “relabeling” the interior states of a process:
Ui’s kernel half is denotedi : K. Becausei : K andj : K have different alphabets fori 6= j,
their operations cannot interfere, and thusUi remains isolated fromUj. Each processi :K will
take on a state configuration based upon the labels of the corresponding user processUi. We use
KS,I,O to denote a process with secrecy labelS ⊆ T , integrity labelI ⊆ T , and ownership of
capabilities given byO ⊆ O.

At a high level, a kernel processK starts idle, then springs to life once receiving an activation
message (ultimately because another process spawned it). Once active, it receives either system



51

calls from its user half, or internal messages from other kernel processes on the system. It
eventually dies when the user process exits. In CSP notation:

K = b?(S, I,O)→ KS,I,O

b is the channel thatK listens on for its “birth” message. It expects arguments of the form
(S, I,O), to instruct it which labels and capabilities to start its execution with. Subsequently,
KS,I,O handles the meat of the kernel process’s duties:

KS,I,O = SYSCALLS,I,O | INTRECVS,I,O

whereSYSCALLis a subprocess tasked with handling all system calls, andINTRECVis theinter-
nal receivingsub-process, tasked with receiving internal messages fromother kernel processes.

For any process IDi, the subprocessi :KS,I,O handles system calls by listening for incoming
messages fromUi along a shared channeli.s. In the definition ofKS,I,O, each system call gets
its own dedicated subprocess:

SYSCALLS,I,O = NEWTAGS,I,O |

CHANGELABELS,I,O |

READMYLABELS,I,O |

READMYCAPSS,I,O |

DROPCAPSS,I,O |

SENDS,I,O |

RECVS,I,O |

SELECTS,I,O |

FORKS,I,O |

GETPIDS,I,O |

EXITS,I,O

Section 4.5 presents all of these subprocesses in more detail.

4.4 Process Alphabets

In the next chapter, we will prove properties about the system, in particular, that messages be-
tween “high processes” (those that have a specified tag in their secrecy label) do not influence the
activity of “low processes.” The standard formula for such proofs is to split the system’s alphabet
into two disjoint sets: “high” symbols, those that the secret influences; and “low” symbols, those
that should not be affected by the secret. We must provide theappropriate alphabets for these
processes so that any symbol in the model unambiguously belongs to one set or the other.

Consider some examples. Take processUi with secrecy labelSi = {t} andIi = {}. When
Ui issues a system call (saycreate tag(Add)) to its kernel halfi : K, the trace forUi is of the



52

form
〈. . . , i.s!(create tag, Add), . . .〉

and the trace fori :K is of the form

〈. . . , i.s?(create tag, Add), . . .〉

That is,Ui is sending a message(create tag, Add) on the channeli.s, andi : K is receiving
it. The problem, however, is that looking at these traces does not capture the fact thatUi’s
secrecy label containst and therefore thatUi is in a “high” state in which it should not affect low
processes. Such a shortcoming does not inhibit the accuracyof the model, but it does inhibit the
proof of non-interference in Chapter 5.

A solution to the problem is simply to include a process’s labels in the messages it sends.
That is, onceUi has a secrecy label ofS = {t}, its kernel process should be in a state such as
K{t},{},{}. When a kernel process is in this state, it will only receive system calls of the form
i.s?({t}, {}, create tag, Add). Thus,Ui must now send system calls in the form:

i.s!({t}, {}, create tag, Add)

Of course, this message format requiresUi to know its currentS and I labels, but because
processes must request label changes explicitly, the user portions can keep track of what its
current labels are.

Messages of the formc!(S, I, . . . ) andc?(S, I, . . . ), are common (wherec is an arbitrary
channel), so we invent new notation:

c �
S,I

(a1, . . . , an) , c!(S, I, a1, . . . , an)

c 	
S,I

(a1, . . . , an) , c?(S, I, a1, . . . , an)

In the context of a kernel processKS,I,O, we need not specifyS and I explicitly; they are
inferred from the kernel’s state. That is, when appearing inside a processKS,I,O, c� is defined:

c � (a1, . . . , an) , c!(S, I, a1, . . . , an)

And similarly for c 	 (· · · ).

4.5 System Calls

We now describe the sub-processes that correspond to the individual system calls. The first
system call subprocess handles a user process’s request fornew tags. Much of this system call is
handled by the global tag managerTAGMGR. Note that after tag allocation, the kernel process
always transitions to a different state, reflecting the new privilege(s) it acquired for tagt. The



53

definition ofTAGMGR(see Section 4.7) guarantees thatOnew is non-empty.

NEWTAGS,I,O =
(

s 	 (create tag, w)→

g � (create tag, w)?(t,Onew)→

s � t→

KS,I,O∪Onew

)

We split theCHANGELABELsubprocess into two cases, the first for changes to secrecy
labels, and the second for changes to integrity labels:

CHANGELABELS,I,O = S-CHANGELABELS,I,O | I-CHANGELABELS,I,O

Where:

S-CHANGELABELS,I,O =
(

chk : CHECKS,I,O�
(

s 	 (change label,Secrecy, S′)→

chk!(S, S′)?r →

if r

then s � Ok→ KS′,I,O

elses � Error→ KS,I,O

))

And:

I-CHANGELABELS,I,O =
(

chk : CHECKS,I,O�
(

s 	 (change label, Integrity, I ′)→

chk!(I, I ′)?r →

if r

then s � Ok→ KS,I′,O

elses � Error→ KS,I,O

))

In both cases, the user process specifies a new label, and theCHECK subroutine determines
if that label change is valid. In the success case, the kernelprocess transitions to a new state,
reflecting the new labels. In the failure case, the kernel process remains in the same state. The
CHECK process computes the validity of the label change based on the process’s current capa-



54

bilities, and the global capabilities held by all processes:

CHECKS,I,O =?(L,L′)→

g!(check-, L− L′ −O−) →

g?r →

g!(check+, L′ − L−O+) →

g?a →

!(r ∧ a)→

CHECKS,I,O

As we will see below, the global tag register repliesTrue to (check-, L) iff L ⊆ Ô−, and replies
True to (check+, L) iff L ⊆ Ô+. Thus, we have that the user process can only change from
label L to L′ if it can subtract all tags inL − L′ and add all tags inL′ − L, either by its own
capabilities or those globally owned (see Definition 2 in Section 3.3).

The user half of a process can call into the kernel state to read its ownS or I label, or to
determine which capabilities it owns. These calls are handled simply by the following subpro-
cesses:

READMYLABELS,I,O =
(

s 	 (get label, Secrecy)→ s � S → KS,I,O |

s 	 (get label, Integrity)→ s � I → KS,I,O

)

And similarly for reading capabilities:

READMYCAPSS,I,O =
(

s 	 (get caps)→ s � O → KS,I,O

)

If a process can accumulate privileges with calls toNEWTAG, it can later discard them with
calls toDROPCAPS:

DROPCAPSS,I,O =
(

s 	 (drop caps,X) → KS,I,O−X

)

On a successful drop of capabilities, the process transitions to a new kernel state, reflecting the
reduced ownership set.

The next process to cover is forking. Recall that each activetaski on the system has two
components: a user componentUi and a kernel componenti : K. The Flume model does not
capture what happens toUi when it callsfork, but an implementation of the model should provide
a mechanism forUi to copy its address space, and configure the execution environment in the
child. The model does capture the kernel-specific behavior in fork as follows:



55

FORKS,I,O =
(

s 	 (fork) →

p � (fork, O)→ p?j →

s � j →

KS,I,O

)

Recall thati.p is a channel from theith kernel process to the process manager in the kernel,
PROCMGR.

The process handlinggetpid is straightforward:

GETPIDS,I,O =
(

s 	 (getpid) →

p!(getpid)→ p?i →

s � i →

KS,I,O

)

And user processes issue anexit system call as they terminate:

EXITS,I,O =
(

s 	 (exit) →

q!(clear) →

p!(exit) →

SKIP
)

Once a process with a given ID has run and exited, its ID is retired, never to be used again. An
alternative implementation is for the last transition ofEXIT to transition back to a starting state,
but such a transition complicates the proof of non-interference in Chapter 5.

4.6 Communication

The communication subprocesses are the crux of the Flume CSPmodel. The require care to
ensure that subtle state transitions in high processes do not result in observable behavior by low
processes. At the same time, they must make a concerted effort deliver messages, so that the
system is useful.

The beginning of a message delivery sequence is the processSEND, invoked whenUi wishes
to send a message toUj . To makeSENDsucceed as often as possible, the kernel attempts to
shrink the process’sS label and to grow its integrity labelI as much as allowed by the process’s
privileges. The actual message send itself goes through theswitchboard processSWITCHvia
channeli.c. The switchboard then sends the message onto the destination j.



56

SENDS,I,O =
(

s 	 (send, j,X,m) →

if X ⊆ O

then g!(dual privs, O)→ g?D →

c!(S −D, I ∪D, j,X,m) →

s � Ok → KS,I,O

else s � Error → KS,I,O

)

The processSWITCHlistens on the other side of the receive channeli.c. It inputs messages
of the formi.c?(S, I, j,X,m) and forwards them to the processj :K asj.c!(S, I, j,X,m):

SWITCH = |∀i

(

i.c?(S, I, j,X,m) →

(j.c!(S, I, i,X,m) → SKIP 9 SWITCH)
)

The SWITCHprocess sends messages in parallel with the next receive operation. This paral-
lelism avoids deadlocking the system if the receiving process has exited, not yet started, or is
waiting to send a message. In other words, theSWITCHprocess is always willing to receive a
new message, delegating potentially-blocking send operations to an asynchronous child process.

Once the message leaves the switch, the receiver process handles it with itsINTRECVsub-
process. After performing the label checks given by Definition 3 in Section 3.3.1, this process
enqueues the incoming message for later retrieval:

INTRECVS,I,O = c?(Sin, Iin, j,X,m) →

g!(dual privs, O)→ g?D →

if (Sin ⊆ S ∪D) ∧ (I −D ⊆ Iin)

then q!(enqueue, (X,m))→ KS,I,O

elseKS,I,O

The final link in the chain is the actual message delivery in user space. For a user-space
process to receive a message, it calls into the kernel, asking it to dequeue and deliver any waiting
messages. Receiving also updates the process’s ownership,to reflect new capabilities it gained.

RECVS,I,O =
(

s 	 (recv, j) →

q!(dequeue, j)→ q?(X,m) →

s � m →

KS,I,O∪X

)

The last subprocess of the group is one that allows a user program to wait for the first avail-



57

able receive channel to become readable:

SELECTS,I,O =
(

s 	 (select, t, A) →
(

µX • (q!(select, A)→ q?B →

if B = {}

then INTRECV*S,I,O ; X

elses � B → KS,I,O)

△t

(

s � {} → KS,I,O

))

The “timed interrupt operator”△t [92] interrupts the selection process aftert clicks of the clock
and outputs an empty result set. Also,SELECTcalls subprocessINTRECV*, which behaves
mostly like INTRECV, except it keeps receiving until an admissible message arrives:

INTRECV*S,I,O = c?(Sin, Iin, j,X,m) →

g!(dual privs, O)→ g?D →

if (Sin ⊆ S ∪D) ∧ (I −D ⊆ Iin)

then q!(enqueue, (X,m))→ SKIP

elseINTRECV*S,I,O

4.7 Helper Processes

It now remains to fill in the details for the helper processes that the variousKS,I,O processes
call upon. They are:TAGMGR, which manages all global tag allocation and global capabilities;
QUEUES, which manages receive message queues, one per process; andfinally PROGMGR,
which manages process creation, deletion, etc.

4.7.1 The Tag Manager(TAGMGR)

The tag manager maintains a global universe of tagsT , keeping track of the global set of privi-
leges available to all processesÔ. It also tabulates which tags have already been allocated, so as
never to reissue the same tag. The setT̂ refers to those tags that were allocated in the past. Thus,
its states are parameterizedTAGMGR̂

O,T̂
. As the system starts,̂O andT̂ are empty:

TAGMGR= TAGMGR{},{}



58

Once active, the tag manager engages in the following calls:

TAGMGR̂
O,T̂

= NEWTAG+̂
O,T̂
|

NEWTAG-̂
O,T̂
|

NEWTAG0̂
O,T̂
|

DUALPRIVŜ
O,T̂
|

CHECK+
Ô,T̂
|

CHECK-
Ô,T̂

Many of these subprocesses will call upon a subroutine that randomly chooses an element
from a given set. We define that subroutine here. Given a setY :

CHOOSEY = ?(S, I) → ⊓
y∈Y

(!y) → STOP

That is, the subprocessCHOOSEnondeterministically picks an elementy from Y and returns it
to the caller. As we will see in Chapter 5,CHOOSE’s refinement (i.e., its instantiation) has an
important impact on security. It can, and in some cases should, take into account the labels on
the kernel process on whose behalf it operates.

The first set of calls involve allocating new tags, such as:

NEWTAG+̂
O,T̂

= choose: CHOOSET −T̂
�

∣

∣

∀i

(

i.g 	 (create tag, Add) →

choose!(S, I)?t →

i.g!(t, {t−}) →

TAGMGR̂
O∪{t+},T̂∪{t}

)

That is, the subprocessNEWTAG+looks at all channels to all other processes (∀i ∈ P) and
picks the first suchi that has input available. Here, it chooses a tagt at random viaCHOOSE,
then returns that tag to the calling kernel process. It then services the next request in a different
state, reflecting that fact that a new capability is available to all processes (t+). Upon allocating
a tagt, the tag manager updates its internal accounting so that it will not reallocate the same tag.

We next defineNEWTAG-andNEWTAG0similarly:

NEWTAG-̂
O,T̂

= choose: CHOOSET −T̂
�

∣

∣

∀i

(

i.g 	 (create tag, Remove) →

choose!(S, I)?t →

i.g!(t, {t+}) →

TAGMGR̂
O∪{t−},T̂∪{t}

)



59

And:

NEWTAG0̂
O,T̂

= choose: CHOOSET −T̂
�

∣

∣

∀i

(

i.g 	 (create tag, None) →

choose!(S, I)?t →

i.g!(t, {t−, t+}) →

TAGMGR̂
O,T̂∪{t}

)

The purpose of theDUALPRIVSsubprocess is to augment a user process’s ownership set
O with all of the globally-held privileges available in̂O. That is, to returnŌi = Oi ∪ Ô for a
given processi. The challenge, however, is to do so without allowing a process to enumerate the
contents ofÔ. To achieve both ends, we specialize the interface toTAGMGR. Given a setOi,
the tag manager process will return the set of tags thatUi has dual privilege for. Since there are
no tagst such that{t−, t+} ⊆ Ô, it follows that the process must own at least one privilege for t
to get dual privilege for it. Thus, theDUALPRIVScall will not alert any process to the existence
of any tags it did not already know of:

DUALPRIVŜ
O,T̂

=
∣

∣

∀i

(

i.g?(dual privs, Oi) →

i.g!((O+
i ∪ Ô+) ∩ (O−

i ∪ Ô−)) →

TAGMGR̂
O,T̂

)

Finally, the behavior ofCHECK+ has already been hinted at. Recall this subprocess checks
to see if the supplied set of tags is globally addable:

CHECK+
Ô,T̂

=
∣

∣

∀i

(

i.g?(check+, L) →

(if L ⊆ Ô+

then i.g!True

elsei.g!False) →

TAGMGR̂
O,T̂

)

And similarly:

CHECK-
Ô,T̂

=
∣

∣

∀i

(

i.g?(check-, L) →

(if L ⊆ Ô−

then i.g!True

else i.g!False) →

TAGMGR̂
O,T̂

)

.



60

4.7.2 The Process Manager (PROCMGR)

The main job of the process manager is to allocate process identifiers when kernel processes call
fork. We assume a large space of process identifiers,P. The process manager keeps track of
subsetP̂ ⊆ P to account for which of those processes identifiers are already in use. In then
allocates fromP − P̂ .

PROCMGR̂
P

= PM-FORK
P̂
|

PM-GETPID
P̂
|

PM-EXIT
P̂

To answer thefork operation, the process manager picks an unused process ID (j) for the child,
gives birth to the child(j :K) with the messagej.b!(S, I,O), and returns child’s process ID to
the caller (parent):

PM-FORK
P̂

= choose: CHOOSEP−P̂
�

∣

∣

∀i

(

i.p?(S, I, fork, O) →

choose!(S, I)?j →

j.b!(S, I,O) →

i.p!(j) →

PROGMGR̂
P∪{j}

)

Trivially:
PM-GETPID=

∣

∣

∀i

(

i.p?(getpid)!i → PROCMGR
)

Kernel processes notify the process manager of their exits.Of course, such notification
would give it opportunity to update its accounting and to return the exiting process identifier into
circulation. But, for now, it handles process exits as no-ops:

PM-EXIT=
∣

∣

∀i

(

i.p?(exit) → PROCMGR
)

A final task for the process manager is to initialize the system, launching the first kernel
process. This process runs with special process IDinit, off-limits to other processes. Thus:

PROCMGR0= init.b!({},T , {}, {}) → PROCMGRP−{init}

4.7.3 Per-process Queues (QUEUES)

Each kernel processi :K needs it own set of queues, to handle messages received asynchronously
from other processes. For convenience, we package up all of the queues in a single processi :
QUEUES, whichi :K can access in all of its various states. The channelq serves communication
between the queues and the kernel process. The building block of this process is a singleQUEUE
process, similar to that defined in Hoare’s book. This process is parameterized by the value stored



61

in the queue, and of course the queue starts out empty:

QUEUE= QUEUE<>

From here, we define state transitions:

QUEUE〈〉 =
(

?(enqueue, x) → QUEUE〈x〉 |

?(select, j)!{} → QUEUE〈〉
)

QUEUE
〈x〉as

=
(

?(enqueue, y) → if #s + 1 < NQ

then QUEUE
〈x〉as

a〈y〉

else QUEUE
〈x〉as

|

?(dequeue)!x → QUEUEs |

?(select, j)!{j} → QUEUE
〈x〉as

)

Note that these queues are bounded beneathNQ elements. Attempts to enqueue messages on
filled queues result in dropped messages. The model combinesmanyQUEUEsubprocesses into
a collection processes calledQUEUESET:

QUEUESET=‖i∈P i :QUEUE

The process calledQUEUEScommunicates with kernel processes. Recall thati.q is the channel
shared betweeni :K andi :QUEUES:

QUEUES= s : QUEUESET� sel : QSELECTs � µX•
(

q?(enqueue, j,m) → s.j!(enqueue,m) → X |

q?(dequeue, j) → s.j!(dequeue)?m → q!m → X |

q?(select, Y ) → sel!Y ?Z → q!Z → X |

q?(clear) → QUEUES
)



62

Finally, the point ofQSELECTis to determine which of the supplied queues have pending mes-
sages. This process uses tail recursion to add to the variable Z as readied queues are found.

QSELECTs = Z : VAR� ?Y →

Z := {} ;
(

µX • (if Y = {}

then (!Z → QSELECTs)

else pickj ∈ Y ;

Y := Y − {j} ;

(s.j!(select, j)→ s.j?A →

(Z := Z ∪A ; X))
)

4.8 High Level System Definition

The overall systemSYSis an interleaving of all the processes specified. Consider some subset
J ⊆ P of all possible process IDs. The user-half of the system, restricted to those processes in
J , is:

UPROCSJ = 9j∈JUj

The kernel processes are:

KSJ =‖j∈J j :
((

K ‖
{j.q}

QUEUES
)

\ αQUEUES
)

Adding in the helper process gives the complete kernel:

KERNEL1J =
(

KSJ ‖
{j.c|j∈J}

SWITCH
)

\ αSWITCH

KERNEL2J =
(

KERNEL1J ‖
{j.g|j∈J}

TAGMGR
)

\ αTAGMGR

KERNELJ =
(

KERNEL2J ‖
{j.p|j∈J}

PROCMGR0
)

\ αPROCMGR0

Finally:
SYSJ = UPROCSJ ‖

{j.s|j∈J}

KERNELJ

Of course, the whole system is captured simply bySYSP .
This assembly of kernel process makes extensive use of the CSP hiding operator (“\”). That

is, the combined processSYSdoes not show direct evidence of internal state transitionssuch
as: communications between anyi : K and the switch; communications with the tag manager;
communications with the process manager; etc. In fact the only events that remain visible are
the workings of the user processesUi and their system calls given byi.s	 andi.s�. By impli-
cation, kernels that implement the Flume model should hide the system’s inner workings from



63

unprivileged users, but this is largely the case already. Inpractical terms, the CSP model forSYS
shows what a non-root Unix user might see if examining his processes with thestrace utility.

4.9 Discussion

We have presented a particular CSP model that captures the Flume DIFC rules discussed at a high
level in Chapter 3. Of course, this is not the only CSP model that might describe an interesting
DIFC kernel. We briefly discuss the advantages and limitations of this approach.

Limitations The Flume DIFC model is a “monolithic” kernel design, in which the kernel
is a large, hidden black box, and user-level processes have alarge system call interface. Some
modern approaches to kernel design (e.g. the Exokernel [23]and the Infokernel [2]) expose more
of the inner workings of the kernel to give application developers more flexibility. However,
in an information flow control setting, such an exposure is potentially dangerous. Imagine,
in the Flume CSP model, that interactions between the process i : K and the tag managers
TAGMGRwere not concealed with\αTAGMGR. Some processi with secrecySi = {t} and
empty ownership issues the system callcreate tag. Assume thati : K makes a call to the
tag manager overi.g, and then the tag manager makes some progress on allocating the new
tag, halting right beforei.g!(t, {t+}). Then, another processj with empty secrecy and empty
ownership also tries to allocate a new tag. Nowj can observe thatNEWTAGcannot proceed
pastg!(create tag, w), because the tag manager is not currently in a state in which it receives
g?(create tag, w). Thus,i can convey bits toj via the tag manager’s internal state machine.
The simplest way to work around this problem is to conceal theinner workings of the kernel
(as we have done). Another, more complicated solution, is tomodel more parallelism inside the
kernel, so that the tag manager can serve bothi andj concurrently, without them contending for
resources (and therefore communicating bits).

Along similar lines, an important limitation is that the above model captures most of the
kernel processes—like thei : K, the tag manager, the queues, and the process manager—
as single-threaded processes. For instance, if the tag manager is responding to a request for
i.g.(create tag, w), it cannot servicej.g.(create tag, w) until it replies toi.g.(create tag, w).
In practical implementations of this CSP model, such serialization might be a bottleneck for
performance. As mentioned above, more parallelism internal to the kernel is possible, but would
require explicit synchronization through locks, and more complexity overall.

The Flume CSP model obviously does not describe a full kernel: an implementation would
have to fill in many pieces, including primitives for reliable interprocess communication and
files (discussed in Chapter 6). In CSP terms, moving from a high-level model to an actual
implementation is known as “refinement:” the behavior of thehigh-level model remains, while
details unspecified in the model (such as nondeterminism in theCHOOSEoperator) are better-
specified. Of course, a real kernel also needs to interface with the CPU, memory, network,
devices, storage, etc., and the model specifies none of theseinteractions. Unfortunately, the
“refinement paradox” holds that even if a process exhibits non-interference, a refinement of that



64

process might not [48]. Thus, even if a kernel faithfully implements the Flume CSP model, it
might still be susceptible to information-leaking attacks.

Advantages Though the Flume CSP model does not automatically yield a leak-free imple-
mentation, the model still serves an important purpose — to prove that some implementation of
the API might exist that does not leak information. The same cannot be said of a model for the
Asbestos or the IX API: all systems that implement those models would be susceptible to large
information flow control leaks (as seen in Section 3.4). To use a poker analogy, implementers
of Asbestos or IX are “drawing dead” — even if they make their hand (achieve a good imple-
mentation), they will still lose to their opponent (the attacker) who had a better hand all along.
Implementers of Flume at least have a fighting chance.

Relative to semantic models from the language community [114], the Flume model provides
much more flexibility as to how the variousUi might behave. The Flume model restricts these
processes from accessing certain communication channel, but otherwise they can behave in any
manner, and need not be type-checked. The innovation here relative to language-level models is
to emulate the user/kernel split already at work in most operating systems.

Finally, the Flume model, relative to the kernel features itdoes model (e.g., IPC, forking,
label creation, etc), is almost completely specified. The one process that uses nondeterminism is
CHOOSE, and Chapter 5 provides more details about how this process should behave.



Chapter 5

Non-Interference

A mature definition in the literature for models like Flume’sis non-interference. Informally:

One group of users, using a certain set of commands, isnoninterferingwith another
group of users if what the first group does with those commandshas no effect on
what the second group of users can see. [36]

That is, for an export-protection tagt, and a processp running withSp = {t}, a processq
running withSq = {} should have an execution path that is entirely independent of p’s. If p
could somehow influenceq, then it could reveal toq information tagged witht, which is against
the high-level export-protection policy.

This chapter explores the non-interference properties of Flume’s CSP model. Previous work
by Ryan and Schneider [88] informs which definition of non-interference to apply (see Sec-
tion 5.2). A proof that Flume fits the definition follows (see Section 5.4).

5.1 CSP Preliminaries

Before we can state our working definition of non-interference, we must define some more CSP
preliminaries. First, a way to identify processes in statesother than their initial states: the
processP/tr is P advanced to the state after the tracetr has occurred. Next, we often talk about
the effects of “purging” certain events from traces and process states. The operator “↾” denotes
projection. The tracetr ↾ A is the tracetr projected onto the setA, meaning all events not inA
are removed. For instance, ifA = {a}, andtr = 〈a, b, c, d, a, b, c〉, thentr ↾ A = 〈b, c, d, b, c〉.
For a setC, the setC ↾ A is simply the intersection of the two.

A final topic, of great interest in the CSP literature, is process equivalence. In this thesis,
we use the “stable failures” model, from Hoare’s book [46] and later rephrased in Schneider’s
book [92] and Roscoe’s book [85]. For a processP , the failures ofP , written SFJP K, are
defined as:

SFJP K = {(s,X) | s ∈ traces(P ) ∧ P/s ↓ ∧ X ∈ refusals(P/s)}

65



66

The traces ofP (denotedtraces(P )) is the set of all traces accepted by the processP . The
notationQ ↓ is a predicate that denotes the processQ is “stable.” Unstable states are those that
transition internally, or those that diverge. For example,consider the process:

P0 = (a→ STOP⊓ b→ STOP)

P0 begins at an unstable state, since it can make progress in either the left or right direction
without accepting any input. However, once it makes its firstinternal transition, arriving at either
a→ STOPor b→ STOP, it becomes stable. A process that diverges, such as(c→ P )\{c}, has
no stable states. Conversely, stable states are those that can make no internal progress.

The refusals ofP (denotedrefusals(P )) is a set of sets. A setX is in refusals(P ) if and
only if P deadlocks when offered any event fromX. For instance, consider the processP0

above. We write thatrefusals(P0) = {{a}, {b}}. That is,P0 can nondeterministically choose
the left branch, in which case it will only accept{a} and will refuse{b}. On the other hand, if
it nondeterministically chooses the left branch, it will accept{b} and refuse{a}. Thus, due to
nondeterminism, we writerefusals(P ) as above, andnot as the flattened union{a, b}. Applying
a similar argument to all states ofP , we can write:

SFJP K = {(〈〉, {a}), (〈〉, {b}), (〈a〉, {a, b}), (〈b〉, {a, b})}

In other words, the failures ofP captures which tracesP accepts, and which sets it refuses after
accepting those traces.

In the stable failures model, two processesP andQ are deemed equivalent if and only if
SFJP K = SFJQK. Two projected processesP ↾ A andQ ↾ A are equivalent if and only if
SFJP K ↾ A = SFJQK ↾ A, where:

SFJP K ↾ A = {(tr ↾ A,X ∩A) | (tr,X) ∈ SFJP K}

and similarly forQ.

5.2 Definition

With these notational preliminaries in mind, a phrasing of non-interference [88] is as follows:

Definition 4 (Non-Interference for SystemS). For a CSP processS, and an alphabet of low
symbolsLO ⊆ αS, the predicateNILO(S) is true iff:

∀tr,tr′ : traces(S). tr ≈LO tr′ ⇒

((S/tr) ↾ LO = (S/tr ′) ↾ LO)

Where:
tr ≈A tr′ ⇔ tr ↾ A = tr ′ ↾ A

We say that the processS exhibits non-interferencewith respect to the low alphabetLO iff



67

NILO(S) is true.

In the stable failures model, the process equivalence relation

(S/tr) ↾ LO = (S/tr ′) ↾ LO

can be rewritten:
SFJ(S/tr)K ↾ LO = SFJ(S/tr ′)K ↾ LO

This definition considers all possible pairs of traces forS that vary only by elements in
the high alphabet (i.e., they are equal when projected to low). For each pair of traces, two
experiments are considered: runningS over the elements in left trace, and runningS over the
elements in the right trace. The two resulting processes must look equivalent from a “low”
perspective. That is, they must accept all of the same traces(projected to low) and refuse all of
the same refusal sets (projected to low).

5.2.1 Stability and Divergence

There are several complications. The first is the issue of whether or not the stable failures model
is adequate. For instance, if a high process caused the kernel to diverge (i.e.,hang), a low
process could record such an occurrence on reboot, thereby leaking a bit (very slowly!) to low.
By construction, the Flume kernel never diverges. One can check this property by examining
each system call and verifying that only a finite number of internal events can occur before the
process is ready to receive the next call. User-space process (e.g.,Ui) can diverge, but their
behavior matters little during a security analysis.

If divergence attacks were a practical concern, we could precisely capture divergent behavior
with the more general Failures, Divergences, Infinite Traces (FDI) model [92]. We conjecture
that Flume’s non-interference results under the stable failures model also hold in the FDI model,
but the proof mechanics are yet more complicated.

5.2.2 Time

The next complication involves time. The model for Flume does not fit in Hoare’s original un-
timed CSP model, since theselect system call requires an explicit timeout (via the△t operator).
Though Schneider develops a full notion of process equivalence in timed CSP [92], the mechan-
ics are complex. Instead, we use a technique introduced by Ouaknine [74] and also suggested
by Schneider [92]: convert our timed model into an untimed model with the introduction of the
eventtock, which represents a discrete unit of time’s passage. In particular, Schneider provides
the Ψ function for mapping processes from timed CSP to discrete-event CSP withtock. For
example:

Ψ(a→ Q) = P0 = a→ Ψ(Q)

� tock → P0

Ψ(WAITn + 1) = tock → Ψ(WAITn)



68

Figure 5-1: Intransitive Non-interference. Arrows depictallowed influence. All influences are
allowedexcepthigh to low.

Without doing so explicitly, we assume that theΨ translation is applied to all states of the Flume
model, and that thetockevent is not hidden by any concealment operator.

5.2.3 Declassification

The third complication isdeclassification, or to use the terminology of the process-algebra litera-
ture, intransitive non-interference. That is, the system should allow certain flows of information
from “high” processes to “low” processes, if that flow traverses the appropriate declassifier. Fig-
ure 5-1 provides a pictorial representation: the system allows low processes and the declassifier
to influence all other processes, and the high processes to influence other high processes and de-
classifiers butnot to influence low processes. However, in the transitive closure, all processes can
influence all other processes, negating any desired security properties. Previous work assumes
the existence of some global security policy, and modifies existing non-interference definitions
to rule out flows not in the given policy [86].

In this thesis, we simplify the problem. Consider an export protection tagt, for whicht+ ∈ Ô
andt− 6∈ Ô. We consider high symbolsHIt as those that emanate from a processpi with t ∈ Si.
All other symbols are consideredLOt. Moreover, we consider only those processes that cannot
declassifyt. Let Nt be the list of the process IDs of these processes:

Nt = {j | t 6∈ Oj}

Our proofs then cover non-interference results forSYSNt , all processes on the system that cannot
declassify secret data tagged with tagt.



69

5.2.4 Model Refinement and Allocation of Global Identifiers

The model presented in Chapter 4 is almost fully-specified, with an important exception: the
processCHOOSE:

CHOOSEY = ?(S, I) → ⊓
y∈Y

(!y) → STOP

The “nondeterministic internal choice” operator (⊓) implies that the model requires furtherre-
finement.The question becomes: how to allocate tags and process identifiers?

Consider an idea that does not work:CHOOSEpicking from Y sequentially, yielding the
tag (or process ID) sequence〈1, 2, 3, . . .〉. This allocation pattern allows high-throughput leaks
of information from high to low. That is, the low process forks, retrieving a child IDi. Then the
high process forksk times, to communicate the valuek to low. The next time low forks, it gets
process IDi+k, and subtractingi recovers high’s message. There are two problems: (1) low and
high processes share the same process ID space; and (2) they can manipulate it in a predictable
way.

In the naı̈ve allocation scheme, the second weakness is exploitable even without the first.
Consider the attack in which a high process communicates a “1” by allocating a new tag via
create tag(Add), and communicates a “0” by refraining from allocating. If a low process could
guess which tag was allocated (call itt), it could then attempt to change its label toS = {t}. If
the change succeeds, then the low process had access tot−, meaning the high process allocated
the tag. If the change fails, it follows the high process refrained from allocation. The key issue
here is that the low process “guessed” the tagt without the high process needing to communicate
it. If such guesses were impossible (or very unlikely), the attack would fail.

Another idea—common to all DIFC kernels (c.f., Asbestos [21], HiStar [113] and the Flume
implementation)—is random allocation from a large pool. The random allocation scheme ad-
dresses the second weakness—predictability—but not the first, and therefore fails to meet the
formal definition for security. That is, operations like process forking and tag creation always
have globally observable side affects: a previously unallocated resource becomes claimed.

Consider, as an example, this trace for the Flume system:

tr = 〈i.b.({t}, {}, {}, {}),

i.s.({t}, {}, fork),

j.b.({t}, {}, {}, {}),

i.s.({t}, {}, j), . . .〉

A new processi is born, with secrecy labelSi = {t}, and empty integrity and ownership. Thus,
i’s actions fall into theHIt alphabet. Oncei starts, it forks a new process, which the kernel
randomly picks asj. The childj runs with secrecySj = {t}, inheriting its parent’s secrecy
label.

Projecting this trace onto the low alphabet yields the emptysequence (tr ↾ LOt = 〈〉). Thus,
this trace should have no impact on the system from a low processk’s perspective. Unfortunately,



70

this is not the case. Beforetr occurred,l could have forked off processj, meaning:

tr ′ = 〈k.b.({}, {}, {}, {}),

k.s.({}, {}, fork),

j.b.({}, {}, {}, {}),

k.s.({}, {}, j), . . .〉

was also a valid trace for the system. But aftertr occurs,tr′ is no longer possible, since the
processj can only be born once. In other words,tr a tr ′ is not a valid trace for the system but
tr ′ is by itself. This contradicts the definition of non-interference in the stable failures model of
process equivalence.

Though random tag allocation does not meet the formal definition for non-interference, it
still “feels” secure. Yes, high processes can theoretically interfere with low processes, but low
processes will never observe that interference under conservative computation assumptions. That
is, to observe that processi forked processj, processk would have to call fork an impractical
number of times. One possible approach from here is to experiment with new, relaxed definitions
on non-interference, though modeling cryptographic randomness has proven troublesome in the
past [88].

To summarize, we have argued that due to the shared global capability pool Ô and the shared
process ID pool̂P , the allocation of these parameters must obey two properties: (1) partitioning;
and (2) unpredictability. Our approach is to design a new allocation scheme that achieves both
properties. We saw that certain schemes like random allocation achieve unpredictability. As for
partitioning, we change the allocation scheme so that processes with different labels pick tags
and processes IDs from different pools, meaning they can under no circumstance interfere with
each other’s choices. That is, the space of tags (and processIDs) is partitioned, and each(S, I)
pair picks tags (and process IDs) from its own partition.

To construct such an allocation scheme, we first define three parameters:

α , the number of bits in a tag

β , log2(maximum number of operations)

ǫ , − log2(acceptable failure probability)

As reasonable value forβ might be 80, meaning that no instance of the Flume system willattempt
more that280 operations. Of course, allocating a tag or forking a new process is an operation,
thus the assumption is that the system will allocate fewer than2β tags or process IDs. Similarly,
it will express no more than2β different labels. A reasonable value forǫ might be 100, meaning
the system might fail catastrophically at any moment with probability no bigger than2−100.

New we define a label serialization function,s(·). Given any labelL ⊆ T , s(L) outputs a
integer in[0, 2β) that uniquely identifiesL. The serialization can be predictable.

Next consider the family of allinjectivefunctions:

G : ({0, 1}β , {0, 1}β , {0, 1}β)→ {0, 1}α



71

The Flume system, upon startup, picks an elementg ∈ G at random. When called upon to
allocate a new tag or process ID, it returnsg(s(S), s(I), x), for some heretofore unusedx ∈
{0, 1}β . The output is a tag in{0, 1}α.

We can solve for how bigα must be in terms ofβ and ǫ. Recall the first key property
is partitioning, meaning functions inG must be injective—their domains must fit inside their
ranges: 23β ≤ 2α, or equivalently,α ≥ 3β. The second key property isunpredictability,
meaning that the outcome ofg is not predictable. Sinceg is chosen randomly fromG, it will
output elements in{0, 1}α in random order. After2β calls,g outputs elements from a set sized
2α − 2β at random. Sinceα ≥ 3β, this “restricted” range forg still has well in excess of
2α−1 elements. Failure occurs when a process can predict the output of g, which happens with
probability no greater than2α−1. Thus,α − 1 ≥ ǫ. Combining these two restrictions,α ≥
max(ǫ + 1, 3β). Our settingsβ = 80 andǫ = 100 giveα = 240.

Thus, we assume thatT = P = {0, 1}α, for a sufficiently largeα. The kernel picksg ∈ G
at random upon startup. ThenCHOOSEis refined as:

CHOOSEY = ?(S, I) → ⊓
y∈G(S,I,Y )

(!y) → STOP

Where:
G(S, I, Y ) =

{

g(S, I, x) | x ∈ T ∧ g(S, I, x) ∈ Y
}

Note thatG(S, I, Y ) ⊆ Y , so the nature of the refinement is just to restrict the set of IDs that
CHOOSEY will ever output, based on the secrecy and integrity labels of the calling process.

5.3 Alphabets

We aim to show thatSYSNt fits the definition of non-interference given in Section 5.2.The first
order of business is to define the alphabetsHIt andLOt, starting withHIt:

HIt ,
{

i.b.(S, I, . . . ) | i ∈ Nt ∧ S ⊆ T s.t. t ∈ S
}

∪
{

i.s.(S, I, . . . ) | i ∈ Nt ∧ S ⊆ T s.t. t ∈ S
}

Now LOt is simply the complement ofHIt:

LOt ,
{

i.b.(S, I, . . . ) | i ∈ Nt ∧ S ⊆ T s.t. t /∈ S
}

∪
{

i.s.(S, I, . . . ) | i ∈ Nt ∧ S ⊆ T s.t. t /∈ S
}

∪

{tock}

These sets are trivially disjoint, and therefore they partition the possible alphabet forSYSNt ,
which we callA for short:

A , αSYSNt = HIt ∪ LOt

The low set,LOt includes the eventtock that marks the passing of time. In the discrete time
model, thesetockevents can be arbitrarily interwoven in any trace.



72

The rest of the events in the Flume model (like communicationthrough the switch, to the
process or tag manager, etc.) are all hidden by the CSP-hiding operators, as given in Section 4.8.
Thus, the exposed view ofSYSNt consists only of process births (i.e.,i.b) and system call traces
(i.e.,i.s). For convenience, define the set of events that correspond to kernel processi’s incoming
system calls, and a set of event that correspond to processi’s responses:

Ci ,
{

i.s.(S, I, create tag, w) | S, I ⊂ T ∧ w ∈ {Add, Remove, None}
}

∪
{

i.s.(S, I, change label, w, L) | S, I, L ⊂ T ∧ w ∈ {Integrity,Secrecy}
}

∪
{

i.s.(S, I, get label, w) | w ∈ {Integrity,Secrecy}
}

∪ · · ·

And so on for all system calls. Similarly for return values from system calls:

Ri ,
{

i.s.(S, I, t) | S, I ⊂ T ∧ t ∈ T
}

∪
{

i.s.(S, I, r) | S, I ⊂ T ∧ r ∈ {Ok, Error}
}

∪
{

i.s.(S, I, L) | S, I, L ⊂ T
}

∪
{

i.s.(S, I,O) | S, I ⊂ T ∧ O ⊂ O
}

∪
{

i.s.(S, I, p) | S, I ⊂ T ∧ p ∈ P
}

The only visible events for processi : K are system calls, system call replies andtock:

α(i : K) = Ci ∪ Ri ∪ {tock}

A final notational convenience: we often describe the failures of a processP projected onto
the low alphabetLOt and abbreviate it:

LtJP K , SFJP K ↾ LOt

5.4 Theorem and Proof

The main theorem is as follows:

Theorem1 (Non-Interference in Flume). For any export-protection tagt, for any Flume instance
SYSNt , and for any security parameterǫ, there exists an instantiation ofCHOOSEsuch that
Pr[NILOt(SYSNt)] ≥ 1− ǫ.

We make several observations. First, note thatSYSNt is not a single CSP process but
rather a family of processes, which vary from one another based on their user-space portions
(UPROCSNt). The theorem must hold for all members of this family. Second, the theorem it-
self is probabilistic. As mentioned above, for any instanceof SYSNt , there is a small chance
that the output ofCHOOSEis guessable, and in that case, the system may not exhibit thenon-
interference property. The best we can do is argue that the property fails with arbitrarily small
probability.



73

Proof Consider any two tracestr andtr ′ such thattr ≈LOt tr ′. The proof technique is induction
over the length of the tracestr andtr′. We invent a new functionλ(·)

λ(tr) , #(tr ↾ LOt)

that outputs the number of low events in a trace. Becausetr ≈ tr′, it follows thatλ(tr) = λ(tr ′).
We first show the theorem holds for all tracestr andtr′ such thatλ(tr) = λ(tr ′) = 0. We then
assume it holds for all traces withλ(tr) = λ(tr′) = k − 1 and prove it holds for all traces with
λ(tr) = λ(tr′) = k.

Base Case For the base case, consider alltr, tr′ ∈ traces(SYSNt) such thatλ(tr) = λ(tr′) = 0.
In other words,tr, tr ′ ∈ HI∗t .

At the system startup (SYSNt after no transitions), all of the kernel processi : K are waiting
on a message of the formi.b before they spring to life. Until such a message arrives,i : K will
refuse all eventsCi andRi. The one exception is the processinit, which is already waiting to
accept incoming system calls when the system starts. By constructionSinit = {} andIinit = T .
Sincet /∈ Sinit, Cinit ∪ Rinit ⊆ LOt. Therefore, the system refuses all high events at startup,
and tr = 〈〉 is the only trace ofSYSNt without low symbols (and for whichλ(tr) = 0). For
tr = tr′ = 〈〉, the lemma trivially holds.

Inductive Step For the inductive step, assume the lemma holds for all tracestr, tr′ of SYSNt

such thattr ≈LOt tr ′ and alsoλ(tr) = λ(tr ′) = k − 1. Now, we seek to show the lemma holds
for all equivalent traces with one more low symbol.

Given an arbitrary tracetr ∈ traces(SYSNt) such thatλ(tr) = k, write tr in the form tr =

p a l a h, wherep is prefix of tr, l ∈ LOt is a single low event, andh ∈ HI∗t are traces of

high events. Similarly fortr′ ∈ traces(SYSNt) wheretr ≈LOt tr ′: write tr ′ = p′ a l a h′. It
suffices to show thatLtJS/trK = LtJS/(p a l)K. If we have shown this equality for arbitrarytr,

then the same applies forS/tr ′, meaningLtJS/tr′K = LtJS/(p′ a l)K. By inductive hypothesis,

LtJS/pK = LtJS/p′K, and thereforeLtJS/(p a l)K = LtJS/(p′ a l)K. By transitivity, we have
thatLtJS/trK = LtJS/tr ′K, which is what needs to be proven. Thus, the crux of the argument is
to show that the high events oftr do not affect low’s view of the system; the second tracetr′ is
immaterial.

We consider the eventl case-by-case over the different events inSYSNt :

• l ∈ Ri for somei

That is,l is a return from a system call into user space. Becausel is a low event,l is of
the formi.s.(S, I, . . . ) wheret /∈ S. After this event,i : K is in a state ready to receive a
new system call (i : KS,I,O). Because all events inh are high events, none are system calls
of the formi.s.(S, I, . . . ) with t /∈ S, and therefore, none can forcei : K into a different
state. In other words, the eventsh can happen either before or afterl; SYSNt will accept



74

(and refuse) the same events after either ordering. That is:

LtJSYSNt/(p
a l a h)K = LtJSYSNt/(p

a h a l)K.

We can apply the inductive hypothesis to deduce that:

LtJSYSNt/(p
a h)K = LtJSYSNt/pK

Appending the same eventl to the tail of each trace gives:

LtJSYSNt/(p
a h a l)K = LtJSYSNt/(p

a l)K

and by transitivity:

LtJSYSNt/(p
a l a h)K = LtJSYSNt/(p

a l)K

which proves the claim for this case.

• l = i.s.(S, I, create tag, w) for somei ∈ P, and somew ∈ {Add, Remove, None}

After accepting this event, the processi : K can no longer accept system calls; it can
only accept a response in the formi.s.(S, I, t′) for some tagt′, or tock. Sincel ∈ LOt,
it follows that t /∈ S for both the system call and its eventual reply. The high events in
h could affect the return value to this system call (and thereforeSFJS/trK) if the space
of t’s returned somehow depends onh, becauseh changed the state of the shared tag
manager. An inspection of the tag manager shows that its state only changes as a result of
a call toe = j.g.(S′, I ′, create tag, w) for some processj, and labelsS′ andI ′. Such a
call would result in a tag such ast′ = g(S′, I ′, x) being allocated, for some arbitraryx.
Becausee ∈ h is a high event,t ∈ S′. Becausel is a low event,t /∈ S. Thus,S′ 6= S,
and assumingg is injective, it follows thatt′ 6= t, for all x. Therefore, events inh cannot
influence which tagst′ might be allocated as a result of a call tocreate tag. We apply
the same argument as above, thath and l can happen either before or after one another
without changing the failures of the system. Hence, the claim holds in this case.

• l = i.s.(S, I, change label, w, L) for somei ∈ P, w ∈ {Add, Remove, None} and
L ⊆ T .

After acceptingl, the processi : K is expecting an event of the formi.s.(S, I, r) for r ∈
{Ok, Error}, to indicate whether the label change succeeded or failed. It will transition
to another internal state (and will behave differently in the future) on success. The only
way an event inh can influence this outcome is to alter the composition ofÔ, which the
tag manager checks oni’s behalf by answeringi.g.(check+) andi.g.(check-) within the
CHECKsubprocess.

Consider the case in whichh contains an evente such thate = j.s.(S′, I ′, create tag, w),
andj is the high process that issuede (that is,t ∈ S′). After e, the kernel might have



75

performed the internal events necessary to serving this system call, meaning a new tagt′

was allocated, and the tag manager switched to a new state reflectingt′+ ∈ Ô or t′− ∈ Ô.
If t′ ∈ L, thenh’s occurrence allowsl to succeed, andh’s absence causesl to fail. t′ ∈ L
if and only if LtJSYSNt/(p

a l)K 6= LtJSYSNt(p
a l a h)K. However, we claim thatt′

is a member ofL only if Ui “predicted” the output ofg, which it can do with negligible
probability (2−ǫ). With extremely high probability,L could only containt′ if the event
e happened before the eventl. But our inductive hypothesis has already ruled out this
possibility.

• l = i.s.(S, I, get label, w) for somew.

This call only outputs information about what state a kernelprocess is in; this state only
updates as a result of low eventsi.s.(S, I, change label). All eventse ∈ h do not fit this
template since they are high events. Therefore,h does not impact the result of system call
l.

• l = i.s.(S, I, get caps).

There are three state transitions that can alter the reply tothe get caps system call:
i.s.(S, I, create tag, w), i.s.(S, I, drop caps, L) or i.s.(S, I, recv, j). None of these
calls are equal to an event inh, since they are low events andh contains only high events.

• l = i.s.(S, I, drop caps,X) for someX.

By definition of theDROPCAPSsub-process, a transition to a newKS,I,O′ can follow a
reply tol. If e ∈ h can influenceO′, then it can changei : K ’s failures. However,e cannot
influenceO′ sinceO′ is set toO−X on a successful operation. If the evente is to allocate
a new tagt′, we can apply the same argument as above to see thatt′+ /∈ O andt′− 6∈ O,
and thereforee cannot affectO′.

• l = i.s.(S, I, fork)

The only eventi : K will accept afterl (other thantock ) is i.s.(S, I, k) wherek is the
process ID of the newly-forked child. By definition ofCHOOSEabove, there exists some
x such thatk = g(S, I, x). If an evente ∈ h causes a process ID to be chosen, it would
be of the formp = g(S′, I ′, y), for somey, and someS′ such thatt ∈ S′. Thatl is a low
symbol implies thatt /∈ S andS 6= S′. If g is injective thenk 6= p. Therefore, evente
will never change the valuek that this kernel process might output next as its reply to the
system calll.

The other result of thefork system call is that now, a new processk is running. That is,
k : K has moved out of the “birth state” and is now willing to acceptincoming system
calls in state(k : KS,I,O). The same arguments as above apply here. Becausek was forked
by a low process, it too is a low process, expecting only low symbols before it transitions
to a new state. Therefore, the events inh cannot affect its state machine.

• l = i.s.(S, I, getpid)



76

After acceptingl, the processi : K will only accepttockor i.s.(S, I, i) in this state, soh
obviously has no effect.

• l = i.s.(S, I, exit)

Regardless ofh, a kernel process will only accepttockafter exiting.

• l = i.s.(S, I, send, j,X,m) for somej,X,m.

The outcome of the send operation depends only on whetherX ⊆ O or not. It therefore
does not depend onh.

• l = i.s.(S, I, recv, j)

The event afterl that i : K accepts isi.s.(S, I,m) for some messagem. It might also
change to a different state if the processj sent capabilities. The relevant possibility for
e ∈ h to consider ise = j.s.(S′, I ′, send, i, {t′+}, 〈〉), for some high processj with
t ∈ S′. The claim is that this message will never be enqueued ati and therefore will not
affect i’s next visible event. Say that processj has ownershipO′ and dual privilegesD′.
Because we assumed thatt− /∈ O ∪ O′ ∪ Ô, t cannot appear in eitherD or D′. Also,
becausei is a low processt /∈ S. Therefore,t ∈ S′ −D′ andt /∈ S ∪D, which implies
thatS′−D′ 6⊆ S ∪D, and the kernel will not enqueue or deliverj’s message toi. Again,
we have thath does not affect thei’s possibilities for the next message it receives. The
same argument applies to the final system call,select.

We have covered all of the relevant cases, and the theorem follows by induction.

5.5 Practical Considerations

The construction ofCHOOSE, based on a truly random functiong ∈ G, is not practical for real
implementations of Flume. The two requirements forG—partitioning (i.e., injectivity) and true
unpredictability—must be relaxed in practice.

The first thought is to replace the random function familyG with a pseudo-random function
family [38]. In this case, all aspects of the construction remain: the random selection ofg
from its family, the serialization functions(·), and the input and outputs of the functiong. In
this construction, the hard bounds on true unpredictability are replaced with weakened bounds,
reflecting computational assumptions for current hard problems.

Another implementation possibility is a “keyed-hash function” such as HMAC [6] in concert
with a collision-resistant hash function like SHA-1 [28] orSHA-256 [29]. By definition:

HMACk(x) = H(k ⊕ opad,H(k ⊕ ipad, x))

wherek is a secret key of sufficient length,opad andipad are two fixed pads, andH is a hash
function like SHA-256. Thus, the kernel might pick a random (and secret) keyk on startup,
and then compute new tags and process IDs with HMACk(S, I, x) for some counter variablex.
This construction approximates both important properties. AssumingH is collision-resistant,



77

HMACk is also collision resistant, meaning an adversary cannot find S, S′, I, I ′, x, x′ such that
HMACk(S, I, x) = HMACk(S

′, I ′, x′) and the inputs differ at least in once place (i.e.,S 6= S′

or I 6= I ′ or x 6= x′). Thus, a high process with secrecy{t} and a low process with secrecy
{} can only get the same tag (or process ID) if there is a collision in the hash function. Sim-
ilarly, under standard computation assumptions, an adversary cannot predict a valid output of
HMACk(S, I, x) without knowingk.

The advantage of the keyed-hash function over the pseudo-random function is twofold: first
the serialization functions(·) can be discarded; and second, tags can be smaller. Above, we
suggested a reasonable length for tags might be 240 bits. If using HMAC with SHA-1, tag
lengths are 160 bits. The cost of this reduction ofg’s range is thatg is no longer injective; it is
merely collision-resistant (i.e., injective under current computational assumptions).

The actual Flume implementation uses an even simpler approach. It picksg at random from
a family of pseudorandom functions, and outputs the sequence g(1), g(2), g(3), . . . for new tag
values or process IDs. Of course, whenSYSNt is refined in this manner, many members of the
SYSNt family have the propertyPr[NILOt(SYSNt)] = 0; for instance, aSYSNt in which a high
process allocates a tag, and then a low process allocates a tag (see Section 5.2.4). We leave
for future work either the substitution of the HMAC functionin the Flume implementation, or a
formal argument that accommodates our actual approach. Fornow we conjecture that in practice
this choice ofg does not negatively impact security.

5.6 Integrity

Though this chapter focuses on secrecy, the same arguments hold for integrity. Pick an integrity-
protection tagt. Then the low symbols are those whose integrity tags containt, and the high
symbols are those that do not. The same proof shows that the high events do not interfere with
the low.



78



Chapter 6

Fitting DIFC to Unix

In Chapters 3 and 4, we developed a model for a DIFC kernel, complete with the beginnings of a
system call API. However, further challenges remain beforewe can build a Unix-like API from
these primitives. To name a few:

1. A Unix kernel offers many ways for processes to communicate with one another: standard
IPC (inter-process communication), the file system, virtual mmaped memory, signals, Sys-
tem V IPC, TCP sockets, signals, and so on. The Flume model allows only one: sending
an unreliable message fromp to q. A Unix-compatible Flume implementation therefore
requires some mapping of all Unix communication mechanismsto a single DIFC primi-
tive.

2. Every message sent between two processes entails a label check. Depending on implemen-
tation, this label check might be computationally expensive and slow down the system.

3. From the application designer’s perspective, message sends can silently fail, greatly com-
plicating debugging. Similarly, Unix-style flow-controlled pipes do not fit the Flume
model as given in Chapter 4, thus programmers lose reliable IPC.

4. Definition 3 usesD̄p to make message sends and receives maximally permissive, meaning
a process that has capabilities always exercises them. Automatic exercise of privilege can
lead to security bugs and is best avoided (c.f., theconfused deputyproblem [43]).

This section describes theFlume system, a refinement of the Flumemodelfrom Chapters 3
and 4. The Flume model gives general guidelines for what properties a system ought to uphold
to be considered “secure” but does not dictate system specifics such as what API processes
use to communicate. Some DIFC kernels like Asbestos expose only unreliable messages (as in
Definition 3) to applications, making reliable user-level semantics difficult to achieve. A goal of
the Flume system is to better fit existing (i.e. reliable) APIs for process communication—that of
Unix in particular—while upholding security in the Flume model.

The Flume system applies DIFC controls to the Unix primitivefor communication, thefile
descriptor. Flume assigns anendpointto each Unix file descriptor. A process can potentially

79



80

adjust the labels on an endpoint, so that all future information flow on the file descriptor, either
sent or received, is controlled by its endpoint’s label settings.

Relative to raw message-based communication, endpoints simplify application program-
ming. When message delivery fails according to Definition 3,it does sosilently to avoid data
leaks. Such silent failures can complicate application development and debugging. However,
when a process attempts and fails to adjust the labels on its endpoints, the system can safely
report errors, helping the programmer debug the error. In many cases, once processes properly
configure their endpoints, reliable IPC naturally follows.

Endpoints also make many declassification (and endorsement) decisionsexplicit. According
to Definition 3, every message a privileged process sends andreceives is implicitly declassified
(or endorsed), potentially resulting in accidental data disclosure (or endorsement). The Flume
system requires processes to explicitly mark those file descriptors that serve as avenues for de-
classification (or endorsement); others do not allow it.

6.1 Endpoints

When a processp acquires a new file descriptor, it gets a new correspondingendpoint. Each
endpointe has its own secrecy and integrity labels,Se andIe. By default,Se = Sp andIe = Ip.
A process owns readable endpoints for each of its readable resources, writable endpoints for
writable resources, and read/write endpoints for those that are bidirectional. Endpoints meet
safety constraints as follows:

Definition5. A readable endpointe is safeiff

(Se − Sp) ∪ (Ip − Ie) ⊆ D̄p.

A writable endpointe is safe iff

(Sp − Se) ∪ (Ie − Ip) ⊆ D̄p.

A read/write endpoint is safe iff it meets both requirements.

All IPC now happens between twoendpoints, not two processes, requiring a new version of
Definition 3.

Definition 6. A message from endpointe to endpointf is safeiff e is writable,f is readable,
Se ⊆ Sf , andIf ⊆ Ie.

We can now prove that any safe message between two safe endpoints is also a safe message
between the corresponding processes. Take processp with safe endpointe, processq with safe
endpointf , and a safe message frome to f . In terms of secrecy, that the message between the
endpoints is safe implies by Definition 6 thate is writable,f is readable, andSe ⊆ Sf . Sincee
andf are safe, Definition 5 implies thatSp− D̄p ⊆ Se andSf ⊆ Sq ∪ D̄q. Combining the three
observations yields:

Sp − D̄p ⊆ Se ⊆ Sf ⊆ Sq ∪ D̄q



81

e4

e1

e5

e⊥

procp procq

e2
file
f1

file
f2

network

Sq = {}
Oq = {x+,x−,y+}

Sp = {x,y}
Op = {y+,y−,z+}

Figure 6-1: Processesp andq. AssumeÔ = {}.

Thus,Sp−D̄p ⊆ Sq∪D̄q, and the message between processes is safe for secrecy by Definition 3.
A similar argument holds for integrity.

6.2 Enforcing Safe Communication

For the Flume system to be secure in the model defined in Chapter 3, all messages must be safe.
Thus, the Flume system enforces message safety by controlling a process’s endpoint configura-
tions (which mustalwaysbe safe), and by limiting the messages sent between endpoints. The
exact strategy depends on the type of communication and how well Flume can control it.

IPC First is communication that the Flume reference monitor cancompletely control, where
both ends of the communication are Flume processes and all channels involving the communi-
cation are understood: for example, two Flume processesp andq communicating over a pipe or
socket pair. Flume can proxy these channels message-by-message, dropping messages as appro-
priate. Whenp sends data toq, or vice-versa, Flume checks the corresponding endpoint labels,
silently dropping the data if it is unsafe according to Definition 6. A receiving processes cannot
distinguish between a message unsent, and a message droppedbecause it is unsafe; therefore,
dropped messages do not leak information.

The endpoints of such a pipe or socketpair aremutable: p andq can change the labels on their
endpoints so long as they maintain endpoint safety (Definition 5), even if the new configuration
results in dropped messages. Verifying that a processp has safe endpoints requires information
aboutp’s labels, but not information aboutq’s. Thus, if a process attempts to change a mutable
endpoint’s label in an unsafe way, the system can safely notify the process of the failure and its
specific cause. Similarly, endpoint safety may prevent a process from dropping one or more of
its non-global capabilities, or from making certain label changes, until either the endpoint label
is changed or the endpoint itself is dropped.

Two processes with different process-wide labels can use endpoints to set up bidirectional
(i.e., reliable) communication if they have the appropriate capabilities. For example, in Figure 6-
1,p can setSe4

= {x}, andq can setSe5
= {x}, thus data can flow in both directions across these

endpoints. In this configuration,p is prohibited from droppingy− or y+, since so doing would



82

makee4 unsafe; similarly,q cannot dropx− or x+. Note that reliable two-way communication
is needed even in the case of a one-way Unix pipe, since pipes convey flow control information
from the receiver back to the sender. Flume can safely allow one-way communication over a
pipe by hiding this flow control information and rendering the pipe unreliable; see Section 7.3.

File I/O Second is communication that the Flume reference monitor chooses not to completely
control. For example, Flume controls a process’s file I/O with coarse granularity: once Flume
allows a process to open a file for reading or writing, it allows all future reads or writes to the file
(see Section 7.4.1). Since the reference monitor does not interpose on file I/O to drop messages,
it enforces safe communication solely through endpoint labels.

When a processp opens a filef , p can specify which labels to apply the corresponding
endpointef . If no labels foref are specified, they default top’s. When openingf for reading,p
succeeds ifef is a safe readable endpoint,Sf ⊆ Sef

andIef
⊆ If . When openingf for writing,

p succeeds ifef is a safe writable endpoint,Sef
⊆ Sf andIf ⊆ Ief

. Whenp opensf for both
reading and writing,ef must be safe, read/write, and must have labels equal to the file’s. It is
easy to show thatp’s file I/O to f is safe under these initial conditions (Definition 3).

Because Flume does not intercept individual file I/O operations, a processp must hold such
an endpointef at least until it closes the corresponding file. Moreover, all labels on file endpoints
(such asef ) are immutable: p cannot change them under any circumstances. Because of label
immutability, and because the initial conditions at file open enforced safety, all subsequent reads
and writes tof acrossef are safe. This immutable endpoint preserves safety by restricting how
the process can change its labels and capabilities. In Figure 6-1, say that filef2 is open read/write
andSe2

= Sf2
= {x}. Thenp cannot drop they− capability, since doing so would makee2

unsafe. Similarly,p cannot addz to Sp despite itsz+ capability; it could only do so if it also
ownedz−, which would preservee2’s safety. Again, Flume can safely report any of these errors
to p without inappropriately exposing information, since the error depends only onp’s local
state.

External Sources and Sinks Immutable endpoints also allow Flume to manage data sent into
and out of the Flume system via network connections, user terminals and the like. If the system
knows a processp to have access to resources that allow transmission or receipt of external
messages (such as a network socket), it assignsp an immutable read/write endpointe⊥, with
Se⊥ = Ie⊥ = {}. Sincee⊥ must always be safe, it must always be the case thatSp − D̄p =
Ip − D̄p = {}. That is,p has the privileges required import and export all of its data.

For instance, processq in Figure 6-1 has a network socket, and therefore gets an immutable
endpointe⊥. This endpoint preventsq from reading export-protected data it cannot export, since
the assumption is thatq would leak the data. Thus,q cannot raiseSq = {y}, as such as change
would compromisee⊥’s safety.

Similarly, if a process has communication channels not yet understood by the Flume refer-
ence monitor (e.g. System V IPC objects), then Flume simply assumes the process can expose
information at any time and gives it ane⊥ endpoint that cannot be removed until the resources



83

e⊥

Bob’s
shell (sh)

Bob’s
editor (ed)

e1

e2

e3

e4
e5

Bob’s
file

Bob’s
console

Ssh = {}
Osh = {b+,b−}

Sed = {b}
Oed = {b+}

Sei = {b},
∀i ∈ [1, 5]

Figure 6-2: A configuration for Bob’s shell and editor. Here,Ô = {b+}.

are closed. This blunt restriction can be loosened as Flume’s understanding of Unix resources
improves.

6.3 Examples

Endpoints help fill in the details of our earlier examples (from Section 3.3.4). For our secrecy
example, Figure 6-2 shows how Bob uses a shell,sh, to launch his new (potentially evil) editor.
Becauseshcan write data to Bob’s terminal, it must have ane⊥ endpoint, signifying its ability
to export data out of the Flume system. Bob trusts this shell to export his data to the terminal
and nowhere else, so he launches the shell withb− ∈ Osh. Now the shell can interact with the
editor, even if the editor is viewing secret files.sh launches the editor processedwith secrecy
Sed = {b} and without theb− capability. The shell communicates with the editor via two pipes,
one for reading and one for writing. Both endpoints in both processes have secrecy labels{b},
allowing reliable communication between the two processes. These endpoints are safe for the
shell becauseb+ ∈ Ô, b− ∈ Osh and thereforeb ∈ D̄sh. ed’s endpoint labels matchSed and
are therefore also safe. Once the editor has launched, it opens Bob’s secret file for reading and
writing, acquiring an immutable endpointe5 with Se5

= {b}. The file open does not changeed’s
existing endpoints and therefore does not interrupt communication with the shell.

Note that sincee5 is immutable, it prevents the editor from changingSed to {a, b}, even
thougha+ ∈ Ô. This restriction makes sense; without it, Bob’s editor could copy Alice’s secret
data into Bob’s file.

In our secrecy example, Bob’s shell processshcan communicate externally through standard
input, output and error; therefore Flume attaches an immutable endpointe⊥ to sh. For Bob to
read one of his own files, he must either changeSsh to {b}, or establish a readable, immutable
endpoint with secrecy{b}. Either configuration is possible (i.e., does not conflict with e⊥), since
b− ∈ Osh andb+ ∈ Ô. If shwere to read one of Alice’s files, it must likewise changeSsh to {a}
or allocate a new readable endpoint with secrecy label{a}. But neither configuration is possible:
a label ofSsh = {a} would conflict withe⊥ and an endpoint with secrecy{a} is not safe given
Osh. Thus, Bob cannot view Alice’s private data from his shell (i.e., export it).

In the shared-secrecy calendar example, Bob launches the processq that examines Alice’s
calendar file. q is disconnected from Bob’s shell, and therefore does not have any endpoints



84

when it starts up.q can then freely setSq = {a}, sincea+ ∈ Ô andq has no endpoints. What if
q opened a writable filef before changingSq to {a}? If f ’s endpoint has secrecySef

= {}, then
q would fail to raiseSq, since the label change would invalidateSef

. Soq cannot leak Alice’s
data to a filef if f is not export-protected. Iff ’s endpoint has secrecySef

= {a}, thenq could
raiseSq to {a} as before.

Another implementation of the calendar service might involve a server processr that Alice
and Bob both trust to work on their behalf. That is,r runs witha− andb− in its ownership set,
and with secrecySr = {a, b}. By default,r can only write to processes or files that have both
export protections.r can carve out an exception for communicating with Alice’s orBob’s shell
by creating endpoints with secrecy{a} or {b}, respectively.

Similar examples hold for integrity protection and for processes that read from low-integrity
sources.



Chapter 7

Implementation

We present a user-space implementation of Flume for Unix, with some extensions for managing
data for large numbers of users (as in Web sites). Flume’s user space design is influenced by
other Unix systems that build confinement in user space, suchas Ostia [34] and Plash [94]. The
advantages of a user space design are portability, ease of implementation, and in some sense cor-
rectness: Flume does not destabilize the kernel. The disadvantages are decreased performance
and less access to kernel data structures, which in some cases makes the user-exposed semantics
more restrictive than the DIFC rules require (e.g., immutable endpoints on files).

Flume’s Linux implementation, like Ostia’s, runs a small component in the kernel: a Linux
Security Module (LSM) [109] implements Flume’s system callinterposition (see Section 7.2).
The OpenBSD implementation of Flume uses thesystracesystem call [80] instead, but we focus
on the Linux implementation in this description.

Figure 7-1 shows the major components of the Flume implementation. Thereference moni-
tor (RM) keeps track of each process’s labels, authorizes or denies its requests to change labels
and handles system calls on its behalf. The reference monitor relies on a suite of helpers: a dedi-
cated spawner process (see Section 7.2), a remote tag registry (see Section 7.4.3), and user space
file servers (see Section 7.4.7). The Flume-aware C library redirects Unix system calls to the
RM and also supports the new Flume calls shown in Figure 7-2. Other machines running Flume
can connect to the same tag registry and therefore can share the same underlying file systems
(e.g.,ihome) over NFS.

7.1 Confined and Unconfined Processes

To the reference monitor, all processes other than the helpers are potential actors in the DIFC
system. A process can use the Flume system by communicating with the reference monitor
via RPCs sent over acontrol socket. For convenience, a C library, which can be linked either
statically or dynamically, translates many system calls into the relevant RPCs. The system calls
that return file descriptors (e.g.,open) use file-descriptor passing over the control socket. A
process can have multiple control sockets to help with multi-threading.

85



86

Reference
Monitor

/usr
FS

/tmp
FS

/ihome
FS

spawner

Flumelibc

processP

Flumelibc

processQ

tag
registry

NFS Server
/ihome

Flume
System

machine running
Flume

tag registry
machine

Figure 7-1: High-level design of the Flume implementation.The shaded boxes represent Flume’s
trusted computing base.

Processes on a system running Flume are eitherconfinedor unconfined. By default, pro-
cesses are unconfined and have empty labels and empty non-global ownership (i.e.,Op − Ô =
{}). The RM assigns an unconfined process an immutable endpointe⊥ with labelsIe⊥ = Se⊥ =
{}, reflecting a conservative assumption that the process may have network connections to re-
mote hosts, open writable files, or an open user terminal (seeSection 6.2). Since a process’s
endpoints must all be safe, a process withe⊥ can add a tagt to its secrecy or integrity label only
if it owns botht+ andt−. Thus, processes with endpointe⊥ cannot view secret data unless they
are authorized to export it.

An unconfined process conforms to regular Unix access control checks. If an unconfined
process so desires, it can issue standard system calls (likeopen) that circumvent the Flume
RM. As they do so, standard Unix permissions prevent unprivileged, unconfined processes from
reading the file system that Flume maintains. That is, files under Flume’s control are owned by
the userflume with access permissions like0600 for plain files and0700 for directories and
binaries. Non-root users running as a user other thanflume cannot access these files due to
standard Unix access control checks.

7.2 Confinement,spawn and flume fork

Confined processesare those for which the reference monitor carefully controls starting condi-
tions and system calls. For any confined processp, the reference monitor installs a system call
interposition policy (via LSM) that preventsp from directly issuing most system calls, especially
those that yield resources outside of Flume’s purview. In this context, system calls fit three cat-
egories: (1)direct, those thatp can issue directly as if it were running outside of Flume; (2)
forwarded, those that the LSM forbidsp from making directly, but the RM performs onp’s on
behalf; and (3)forbidden, which are denied via LSM and not handled by the RM. Figure 7-4
provides a partial list of which calls fall into which categories. The goal here is for the RM to



87

• label get label({S,I})

Return the current process’sS or I label.

• capset get caps()

For the current processp, return capability setOp.

• int change label({S,I}, label l)

Set current process’sS or I label tol, so long as the change is safe (Definition 2) and the change keeps all
endpoints safe (Definition 5). Return an error code on failure.

• int drop caps(capset O′)

Reduce the calling process’s ownership toO′. Succeed if the new ownership keeps all endpoints safe and isa
subset of the old.

• label get fd label({S,I}, int fd)

Get theS or I label on file descriptorfd’s endpoint.

• int change fd label({S,I}, int fd, label l)

Set theS or I label onfd’s endpoint to the given label. Return an error code if the change would violate the
endpoint (Definition 5), or if the endpoint is immutable. Still succeed even if the change stops endpoint flows
(in the sense of Definition 6).

• tag create tag({EP,IP,RP})

Create a new tagt for the specified security policy (export, integrity or readprotection). In the first case add
t+ to Ô; in the second addt− to Ô; and in the third add neither.

• int flume pipe(int *fd, token *t)

Make a newflume pipe, returning a file descriptor and a pipe token.

• int claim fd by token(token t)

Exchange the specified token for its corresponding file descriptor.

• pid spawn(char *argv[], char *env[], token pipes[], [label S, label I,
capset O])

Spawn a new process with the given command line and environment. Collect given pipes. By default, set
secrecy, integrity and ownership to that of the caller. IfS, I andO are supplied and represent a permissible
setting, set labels toS, I , and ownership set toO.

• pid flume fork(int nfds, const int close fds[])

Fork a copy of the current, confined process, and yield a confined child process. In the child, close the given
file descriptors after forking the Unix process structure, but before subjecting the child process to scrutiny.

Figure 7-2: A partial list of new API calls in Flume.



88

maintain a complete understanding ofp’s resources. A confined process likep trades the re-
strictions implied bye⊥ for a more restrictive system call interface. Confined process come into
existence by one of two means: viaspawn or flume fork.

7.2.1 spawn

Confined and unconfined processes alike can callspawn to make a new confined process.
spawn combines the Unix operations offork andexec, to create a new process running
the supplied command. When a processp spawns a new confined processq, q’s labels default
to p’s, butq starts without any file descriptors or endpoints.q accumulates endpoints as a result
of making new pipes and sockets or opening files (see Section 7.4.1). System call interposition
blocks other resource-granting system calls.

Without explicit access to thefork stage of the spawn operation, confined processes cannot
use the Unix convention of sharing pipes or socketpairs withnew children. Instead, Flume offers
flume pipe andflume socketpair, which take the same arguments as their Unix equivalents,
but both return a single file descriptor and a random, opaque 64-bit “pipe token.” Once a process
p receives this pair, it typically communicates the pipe token to another processq (perhaps across
a call tospawn). q then makes a call to the reference monitor, supplying the pipe token as an
argument, and getting back a file descriptor in return, whichis the other logical end of the pipe
(or socketpair) that the reference monitor gave top. Now p andq can communicate.

Processes callingspawn (and alsoflume fork below) therefore depend on“pipe tokens”
to communicate with their children, but the primitive is more general: a processp can call
flume pipe or flume socketpair at any time, and communicate the token to other processes
via IPC, the file system, or any other means. Hence, pipe tokens must be randomly-chosen and
unguessable: whichever process presents the token first will “win” the other side ofp’s pipe
or socketpair. If, by contrast,q could guessp’s pipe-token, it could impersonatep’s intended
counterparty, stealing or vandalizing important data.

The spawn operation takes up to six arguments: the command line to execute, an initial
environment setting, an array of pipe tokens, and optional labels. The new process’s labels are
copied from the process that calledspawn, unlessS, I,O are specified. If the creator could
change to the specifiedS, I,O labels, then those labels are applied instead. The only file de-
scriptors initially available to the new process are a control socket and file descriptors obtained
by claiming the array of pipe tokens. The new process is not the Unix child of the creating
process, but the creator receives a random, unguessable token that uniquely identifies the new
process (see below for a rationale). Labels permitting, thecreator can wait for the new process
or send it a signal, via forwarded versions ofwait andkill.

Internally, the reference monitor forwardsspawn requests to a dedicated spawner process.
The spawner first callsfork. In the child process, the spawner (1) enables the Flume LSM
policy; (2) performs any setlabel label manipulations if the file to execute is setlabel (see Sec-
tion 7.4.5); (3) opens the requested executable (e.g.foo.sh), interpreter (e.g./bin/sh) and
dynamic linker (e.g.,/lib/ld.so) via standard Flumeopen calls, invoking all of Flume’s
permission checks; (4) closes all open file descriptors except for its control socket and those



89

opened in the previous step; (5) claims any file descriptors by token; and (6) callsexec.
The Flume LSM policy disallows alldirect access to file systems by confined processes with

a notable exception. When the child callsexec in Step (6), the LSM allows access to direc-
tories (used during path lookups in the kernel) and access tothe binaries and scripts needed by
exec, so long as they were opened during Step (3). Once theexec operation completes, the
LSM closes the loophole, and rejects all future file system accesses. The Flume LSM policy
also disallowsgetpid, getppid, and friends. Because Linux allocates PIDs sequentially,
two confined processes could alternatively exhaust and query the Linux PID space to leak in-
formation. Thus, Flume issues its own PIDs (chosen randomlyfrom a sparse space) and hides
Linux PIDs from confined processes. The standard LSM framework distributed with Linux does
not interpose ongetpid and friends, but Flume’s small kernel patch adds LSM hooks that can
disable those calls. Flume still works without the patch butallows confined processes to leak
data through PIDs.

Confined processes run as an unprivileged user with whom other unprivileged users cannot
interfere (along the same lines as Apache’swww user). If an adversary were to take over a con-
fined process, it could issue only those system calls allowedby the Flume LSM policy. All other
system interaction happens through the reference monitor and is subject to Flume’s restrictions.

Finally, Linux notifies the spawner when a spawned process exits. The spawner reports this
fact to the creating process via the reference monitor if labels allow communication between the
exiting and creating process.

7.2.2 flume fork

Confined processes can also fork other confined processes viaflume fork, an approximation of
standard Unixfork. Fork is preferable to spawn in some cases for one major reason: perfor-
mance. On the Linux machine used for our benchmarks (see Chapter 9), forking one Python
process from another is five times faster than spawning that same new Python process anew.
Such a discrepancy is exacerbated by Flume’s system call overhead, which makes the many
open calls involved with spawning a new Python process (and importing runtime libraries) all
the more expensive. Thus, a busy system (like a Web server) might chose to spawn one Python
process, importing all of the necessary libraries, then fork once for each incoming client request,
rather than spawning each time.

The difficulty in forking in a DIFC context issharedfile descriptors. As an example, consider
the attack that Figure 7-3 depicts. The parent processp intends to steal the data stored in the file
f , even thoughSp = {} andSf = {}. To pull off the heist,p first launches asourceprocess,
whose task is simply to output a sequence of integers, like〈1,2,3, . . .〉, to its standard output.
The parentp listens to the source on its standard input. It then forks a child c, so that after the
fork, p andc share the pipe to the source. Next,c raises its label toSc = {t}, reads the contents
of the filef (in this case “5”), then reads that many integers from standard input. Afterwaiting
a sufficient time,p reads from its standard input, retrieving the valuec wished to communicate
to it, and therefore the value stored inf .

The shared resourcep andc use to communicate in this attack is the stream of data coming



90

Figure 7-3: An attack againstfork that allows file descriptor sharing between parent and child.

from the source process, which they can both read and therefore modifywith their shared file
descriptor (as noted by IX’s authors [66]). Thus, a fork for confined processes cannot allow
parents to share file descriptors with their children. And more obviously,mmaped memory
regions established in the parent process and inherited by the child are verboten.

Given these constraints, forking among confined process proceeds as follows:

1. The parent callsflume fork, providing as an argument the set of all file descriptors to close
in the child.

2. In the library, the parent asks the reference monitor for anew control socket (eventually to
give to the child). The parent also creates a temporary pipe.

3. The parent calls standard Unixfork. The parent closes the child’s control socket, and the
child’s end of the temporary pipe. It then writes a byte to itsend of the temporary pipe.

4. The child closes the parent’s control socket, and the parent’s end of the temporary pipe.
It also closes all of the file descriptors passed in as arguments to flume fork. It waits
on its side of the pipe for an incoming byte. Once received, the child has exactly one
file descriptor—its own control socket. Furthermore, it knows that it controls the only
reference to that file descriptor, since it received the bytethe parent sentafter it closed its
copy of that same file descriptor.

5. The child then calls into the reference monitor, asking for “unshared fate,” i.e., the ability
to set its labels independently of its parent’s. Before the reference monitor grants this
request, it calls into the kernel to scrutinize the child, ensuring:

(a) The child has nosharedmmaped memory regions

(b) The child has only open file descriptor, its control socket.

(c) The child’s end of the control socket only has one reference, and that the other side
is controlled by the reference monitor.

6. On success, the child gets independence and confinement; it can them reopen pipes using
pipe tokens inherited in its address space.



91

7. The parent gets, as a return value, the process ID of the child process.

The goal of this protocol is to ensure that if parent and childcan set labels independently
(as in Figure 7-3’s attack), then they share no communication channels at the time of the fork.
The checks in Step 5 ensure no communication via file descriptors, and no communication via
sharedmmaped memory pages. One might be tempted to ensure the child hasnommaped pages;
however, this restriction is impractical, since many components of the standard library (e.g.,
dynamic library loading, configuration file reading, dynamic memory allocation) usemmap. In
all cases1, those mappings areMAP PRIVATE and therefore cannot be used to write to a child
across afork.

In Step 5, the kernel checks that the child has only a control socket open. If the child could
inherit arbitrary file descriptors from its parent, the kernel checks would be considerably more
complicated, forcing the Flume LSM to look deep into Linux data structures, which are bound
to change over time. The “one-file policy” significantly simplifies the kernel checks required,
yielding another application forflume pipe and pipe tokens.

As Figure 7-4 shows, confined processes are still free to callthe standard Unixfork. How-
ever, if they do, the reference monitor treats the parent andchild as the same process. If the child
changes label, the label change also affects the parent. Indeed, the parent and child can com-
municate with each other viammaped memory or shared file descriptor ends, but because their
labels cannot diverge, they cannot use the channels to move information against safety rules.

7.3 IPC

Whenp andq establish communication as a result of pipe token exchange,the file descriptors
held byp andq actually lead to the reference monitor, which passes data back and forth between
the two processes. The reference monitor proxies so it can interrupt communication if either
process changes its labels in a way that would make endpoint information flow unsafe. (Recall
that the RM cannot reject such a change, since so doing would convey top information aboutq’s
labels, or vice versa).

Flume takes special care to prevent unsafe information flowswhen the processes at either
end of a pipe or socket have different labels. Consider two processesp andq connected by a
pipe or socket where the relevant endpoint labels are the same as the process labels. IfSp = Sq

andIp = Iq, data is free to flow in both directions, and communication isreliable as in standard
Unix. That is, if p is writing faster thanq can read, then the reference monitor will buffer up
to a fixed number of bytes, but then will stop reading fromp, eventually blockingp’s ability to
write. If Sq ( Sp or Ip ( Iq, data cannot flow fromq to p. Communication becomes one-way
in the IFC sense and is no longer reliable in the Unix sense. The reference monitor will deliver
messages fromp to q, as before, but will always be willing to read fromp, regardless of whether
q exited or stopped reading. As the reference monitor reads fromp without the ability to write to
q (perhaps becauseq stopped reading), it buffers the data in a fixed-size queue but silently drops
all overflow. Conversely, all data flowing fromq to p (including an EOF marker) is hidden from

1With the exception ofgconv in glibc 2.6.1.



92

Direct Forwarded

clock gettime, close(file), dup, dup2, exit,
fchmod, fstat, getgid, getuid, getsockopt,
lseek, mmap, pipe, poll, read, readv, recvmsg,
select, sendmsg, setsockopt, setgid,
sigprocmask, socketpair, write, writev . . .

access, bind(Unix-domain socket), chdir,
close(socket), flume fork† getcwd, getpid, kill,
link, lstat, mkdir, open, symlink, readlink,
rmdir, spawn†, stat, unlink, utimes, wait . . .

Forbidden
bind(network socket), execve, getsid∗, getpgrp∗,
getpgid∗, getppid∗, ptrace, setuid . . .

Figure 7-4: A partial list of system calls available to confined processes in Flume. Those marked
with “*” could be forwarded with better reference monitor support. Those marked with “†” are
specific to Flume.

p. The reference monitor buffers this data at first, then dropsit once its queue overflows. Ifp or
q changes its labels so thatSp = Sq andIp = Iq, then the reference monitor flushes all buffered
data and EOF markers. In practice, one-way communication iscumbersome and rarely used; see
Section 10.1 for more details.

Spawned Flume processes can also establish and connect to Unix domain sockets. Creating a
socket file is akin to creating a file and keeping it open for writing and follows the same rules (see
the next section). Connecting to a Unix domain socket is akinto opening that file for reading.
Assuming a client and server are permitted to connect, they receive new file descriptors and
communicate with the proxy mechanism described above.

7.4 Persistence

The Flume system aims to provide file system semantics that approximate those of Unix, while
obeying DIFC constraints. Flume must apply endpoints to opened files to prevent data flows
through the file system that are against DIFC rules. It also must enforce a naming scheme for
files in a standard directory hierarchy that does not allow inappropriate release of information.
Additionally, Flume must solve problems specific to DIFC, such as persistent storage and man-
agement of capabilities.

7.4.1 Files and Endpoints

To get Unix-like semantics, a process under Flume (whether confined or not) must have direct
access to the Unix file descriptor for any file it opens, in caseit needs to callmmap on that
descriptor. Thus, the RM performsopen on a process’s behalf and sends it the resulting file
descriptor. The reference monitor cannot then interrupt the process’s reads and writes to the
file if the process changes its label in a way that make that flowunsafe, as it does with pipes.
Instead, the reference monitor relies on immutable endpoints to restrict the way the process can
henceforward change its labels.

File opens work as described in Section 6.2, with two additional restrictions in the case of
writing. First, Flume assigns read/write endpoints to all writable file descriptors. A writer can



93

learn information about a file’s size by observingwrite’s or lseek’s return codes, and hence
can “read” the file. The read/write endpoint captures the conservative assumption (as in HiStar)
that writing always implies reading. Second, a filef has an immutablewrite-protect setWf in
addition to its immutable labelsSf andIf . A processp can only write to objectf if it owns
at least one capability inWf (i.e., Op ∩ Wf 6= {}). This mechanism allows write protection
of files in a manner similar to Unix’s; only programs with the correct credentials (capabilities)
can write files with non-emptyWf sets. By convention, awrite-protect tagis the same as an
integrity-protect tag:t− ∈ Ô, andt+ is closely guarded. Butt does not appear inI or S labels;
only the capabilityt+ has any use. The presence oft+ in Wf yields the policy that processes
must ownt+ to writef .

File closes use the standard Linuxclose. The reference monitor does not “understand” a
process’s internals well enough to know if a file is closed with certainty. Better LSM support can
fix this shortcoming, but for now, Flume makes the conservative assumption that once a process
has opened a file, it remains open until the process exits. The“stickiness” of these endpoints is
indeed a shortcoming of the system, as it complicates application development. Future versions
of Flume might do better file-descriptor accounting, allowing a process to drop an immutable
endpoint after it closes the last reference to a file.

7.4.2 File Metadata

While Section 3.3 explains how file contents fit into Flume’s DIFC, information can also flow
through meta-data: file names, file attributes, and file labels. Flume does not maintain explicit
labels for these items. Instead, Flume uses a directory’s label to control access to the names and
labels of files inside the directory, and a file’s label to control access to the file’s other attributes
(such as length and modification time). Flume considers thata path lookup involves the process
reading the contents of the directories in the path. Flume applies its information flow rules to
this implicitly labeled data, with the following implications for applications.

A directory can contain secret files and yet still be readable, since the directory’s label can be
less restrictive than the labels of the files it contains. Typically the root directory has an empty
S label and directories become more secret as one goes down. Integrity labels typically start
out atT at the root directory and are non-increasing as one descends, so that the path name to a
high-integrity file has at least as high integrity as the file.

The file system’s increasing secrecy with depth means a process commonly stores secret files
under a directory that is less secret. The Flume label rules prevent a process from creating a file
in a directory that is less secret than the process, since that would leak information through the
file’s name and existence. Instead, the process can “pre-create” the files and subdirectories it
needs early in its life, before it has raised itsS label and read any private data. First, the process
creates empty files with restrictive file labels. The processcan then raise itsS label, read private
data, and write output to its files.

If a processp with labelsSp andIp wants to spontaneously create a filef with the same
labels, without pre-creating it, Flume offers a namespace logically filled with precreated directo-
ries for each(Sp, Ip) pair. p can write to directory of the form/ihome/srl(Ip).srl(Sp), where



94

srl(L) is a serialized representation of labelL. This directory has integrity levelIp and secrecy
levelSp. Within that directory, the regular file system rules apply.Processes cannot directly open
or read the/ihome directory, though they can traverse it on the way to opening files contained
therein.

7.4.3 Persistent Privileges

In addition to supporting legacy Unix-like semantics, Flume provides persistence for capabilities
and file labels. A process acquires capabilities when it creates new tags but loses those capabil-
ities when it exits. In some cases, this loss of capabilitiesrenders data permanently unreadable
or unwritable (in the case of integrity). Consider a useru storing export-protected data on the
server. A process acting onu’s behalf can create export-protect tagtu and write a filef with
Sf = {tu}, but if tu

− evaporates when the process exits, the file becomes inaccessible to all
processes on the system.

Flume has a simple mechanism for sharing capabilities liketu
− across processes, reboots,

and multiple machines in a server cluster. First, Flume includes a “central tag registry” that
helps applications give long-term meaning to tags and capabilities. It can act as a cluster-wide
service for large installations, and is trusted by all machines in the cluster. The tag registry
maintains three persistent databases: one that maps “logintokens” to capabilities, one that re-
members the meanings of capability groups, and a third database for extended file attributes (see
Section 7.4.7).

A login token is an opaque byte string, possession of which entitles the holding process to a
particular capability. A process that owns a capabilityc can ask its RM to give it a login token
for c. On such a request, the RM asks the tag registry to create the token; the tag registry records
the token andc in a persistent database. A process that knows a token can askits RM to give
it ownership of the corresponding capability. The operation succeeds if the RM can find the
token and corresponding capability in the registry. Such a facility is useful, for instance, in the
management of Web sessions. The privilegesu uses during a Web session can be converted to
such a token and then stored onu’s Web browser as an HTTP cookie, allowingu to recover the
necessary capabilities before each page load.

When creating new tokens, the tag registry chooses tokens randomly from a large space so
that they are difficult to forge. It also can attach a timeout to each token, useful when making
browser cookies good for one Web session only.

7.4.4 Groups

Some trusted servers keep many persistent capabilities andcould benefit from a simpler manage-
ment mechanism than keeping a separate login token for each capability. For example, consider
a “finger server” that users trust to declassify and make public portions of their otherwise private
data. Each useru protecting data with export-protect tagtu must granttu− to the finger server.

Instead of directly collecting these capabilities (every time it starts up), the finger server
owns a groupG containing the capabilities it uses for declassification. Owning a capability for
G implies owning all capabilities contained inG. When a new userv is added to the system,



95

v can addtv
− to G, instantly allowing the finger server to declassifyv’s files. Groups can

also contain group capabilities, meaning the group structure forms a directed graph. Like any
other capability, group capabilities are transferable, and can be made persistent with the scheme
described in Section 7.4.3.

Capability groups are a scalability and programmability advance over previous DIFC pro-
posals. In practice, secrecy and integrity labels stay small (less than 5 tags), and capability
groups allow ownership sets to stay small, too. All group information is stored in the central tag
registry, so that multiple machines in a cluster can agree onwhich capabilities a group contains.
Reference monitors contact the tag registry when performing label changes. Since groups could
grow to contain many capabilities, a reference monitor doesnot need to download the entire
group membership when checking label change safety. Instead, it performs queries of the form
“is capability c a member of groupg,” and the registry can reply “yes,” “no” or “maybe, check
these subgroups.” In our experience, groups graphs form squat, bushy trees, and the described
protocol is efficient and amenable to caching.

Finally, so that the groups themselves do not leak information, Flume models groups as ob-
jects, like files on the file system. When created, a group takes on immutable labels for secrecy
and integrity, and also (at the creator’s discretion) a write-protect capability set. Processes mod-
ifying a group’s membership must be able to write to the groupobject (currently, only addition
is supported). Processes using groups in their label changeoperations are effectively reading the
groups; therefore, processes can only use a group capability in their ownership sets if they can
observe the group object.

7.4.5 Setlabel

Flume provides asetlabelfacility, analogous to Unix’ssetuidor HiStar’s gates, that is the best
way for a process without privileges to launch a declassifier. Setlabel tightly couples a persistent
capability with a program that is allowed to exercise it. A setlabel file contains a login token
and a command to execute. Flume never allows a setlabel file tobe read, to prevent release of
the login token. Instead, the file’sS andI labels limit which processes can execute the file. A
process whoseS andI allow it to read the setlabel file may ask the reference monitor to spawn
the file. The reference monitor executes the command given inthe file, granting the spawned
process the capability referred to by the login token.

An example use for a setlabel process is a password checker. Aprocessp has a hash of a
password for a useru, and wants to check if that hash matchesu’s password in a secret password
file. The password file is labeledSf = {t}, wheret is an export protect tag. The password
checkerq runs as a setlabel process. The setlabel file contains the path of the password checker
binary, and also a login token fort−. p launchesq, feeding it the useru and the supposed hash
of u’s password.q reads in the password file, checks the hash, and outputs success or failure to
p. This output declassifies one bit about the password file, andtherefore requires the exercise of
t−.

Setlabel files can also specify a minimum integrity label,Is. The RM only allows a process
p to execute such a setlabel file ifIs ⊆ Ip. This minimum integrity requirement helps defend the



96

setlabel process from surprises in its environment (such asa badLD LIBRARY PATH).

7.4.6 Privileged Filters

Finally, in the application we’ve built, we have found a needfor automatic endorsement and
declassification of files; see Section 8.7 for a detailed motivation. A process can create afilter
to replace “find label” (Lfind) with a “replace label” (Lrepl) if it owns the privileges to add all
tags inLrepl− Lfind and to subtract all tags inLfind− Lrepl. The filter appears as a file in the file
system, similar to a setlabel file. Any other processp that can read this file can activate this filter.
After activation, wheneverp tries to open a file for reading whose file label contains all the tags
in Lfind, Flume replaces those tags withLrepl before it decides whether to allow the process to
open the file. A process can activate multiple filters, composing their effects.

7.4.7 File System Implementation

The reference monitor runs a suite of user-space file server processes, each responsible for file
system operations on a partition of the namespace. The reference monitor forwards requests
such asopen andmkdir to the appropriate file server. To reduce the damage in case the file
server code has bugs, each server runs as a distinct non-rootuser and ischrooted into the part
of the underlying file system that it is using. The usual Unix access-control policies hide the
underlying file system from unprivileged processes outsideof Flume.

Each file server process store files and directories one-for-one in an underlying conventional
file system. It stores labels in the extended attributes of each underlying file and directory. To
help larger labels fit into small extended attributes, the tag registry provides a service that gener-
ates small persistent nicknames for labels. Flume file servers can also present entire underlying
read-only file systems (such as/usr) as-is to Flume-confined software, applying a single label
to all files contained therein. The Flume system administrator determines this configuration.

Since Linux’s NFS client implementation does not support extended attributes, Flume sup-
ports an alternate plan when running over an NFS-mounted filesystem. In this case, Flume
stores persistent label nicknames as 60-bit integers, split across the user and group ID fields of
a file’s metadata. The fake UID/GID pairs written to the file system are in the range[230, 231),
avoiding UIDs and GIDs already in use. This approach unfortunately requires the file server to
run as root, for access to thefchown call.

Simultaneous use of the same underlying file system by multiple Flume file server processes
might result in lack of atomicity for label checks and dependent operations. For example, check-
ing that file creation is allowed in a directory and actually creating the file should be atomic.
Race conditions might arise when a cluster of hosts share an NFS file system. Flume ensures the
necessary atomicity by operating on file descriptors ratherthan full path names, using system
calls such as Linux’sopenat.

The DIFC rules require that a process must read all directories in any path name it uses.
One approach is to laboriously check each directory in a given path name. In practice, however,
applications arrange their directory hierarchies so that secrecy increases and integrity decreases
as one descends. The Flume implementation enforces this ordering, with no practical loss of



97

generality. Flume can thus optimize the path check: if a process can read a filef , it must also
be able to read all off ’s ancestors, so there is no need to check. If the file does not exist or the
process cannot read it, Flume reverts to checking each path component, returning an error when
it first encounters a component that does not exist or cannot be read.

At present, Flume supports most but not all of Unix’s semantics. The current implementation
allows renames and creation of hard links only within the same directory as the original file. And
Flume implements the per-process working directory by remembering a path name per process,
which will deviate from Unix behavior if directories are renamed.

Flume’s file system has shortcomings in terms of security. Anunconfined process with Unix
super-user privileges can use the underlying file system directly, circumventing all of Flume’s
protections. This freedom can be a valuable aid for system administrators, as well as an opportu-
nity for attackers. Also, Flume does not avoid covert channels related to storage exhaustion and
disk quotas. A solution would require deeper kernel integration (as in HiStar).

7.5 Implementation Complexity and TCB

The RM, spawner, file servers, and tag registry are all part ofFlume’s trusted computing base.
We implemented them in C++ using the Tame event system [57]. Not counting comments and
blank lines, the RM is approximately 14,000 LOC, the spawnerabout 1,000 LOC, the file server
2,500 LOC, and the tag registry about 3,500 LOC. The Flume LSMis about 500 LOC; the patch
to the LSM framework forgetpid and the like is less than 100 lines. Totaling these counts, we
see Flume’s total TCB (incremental to Linux kernel and user space) is about 21,500 LOC.

Flume’s version oflibc, the dynamic linker and various client libraries (like those for
Python) are not part of the trusted computing base and can have bugs without compromising
security guarantees. These libraries number about 6,000 lines of C code and 1,000 lines of
Python, again not counting comments and empty lines.



98



Chapter 8

Application

This section explores Flume’s ability to enhance the security of off-the-shelf software. We first
describe MoinMoin [68], a popular Web publishing system with its own security policies. We
then describe FlumeWiki, a system that is derived from Moin but enforces the Moin’s policies
with Flume’s DIFC mechanisms. FlumeWiki goes further, adding a new security policy that
offers end-to-end integrity protection against buggy MoinMoin plug-ins. The resulting system
substantially reduces the amount of trusted application code.

8.1 MoinMoin Wiki

MoinMoin is a popular Python-based Web publishing system (i.e., “wiki”) that allows Web
clients to read and modify server-hosted pages. Moin is designed to share documents between
users, but each page can have an access control list (ACL) that governs which users and groups
can access or modify it. For example, if a company’s engineering document is only meant to be
read by the engineers and their program manager Alice, the document would have the read ACL
(alice, engineers), where “alice” is an individual and “engineers” is a group containing all the
engineers.

Unfortunately, Moin’s ACL mechanism has been a source of security problems. Moin com-
prises over 91,000 lines of code in 349 modules. It checks read ACLs in 41 places across 22
different modules and write ACLs in 19 places across 12 different modules. The danger is that
an ACL check could have easily been omitted. Indeed, a publicvulnerability database [73] and
MoinMoin’s internal bug tracker [68] show at least five recent ACL-bypass vulnerabilities. (We
do not address cross-site scripting attacks, also mentioned in both forums.) In addition to ACL
bugs, any bug in Moin’s large codebase that exposes a remote exploit could be used to leak
private data or tamper with the site’s data.

Moin also supports plug-ins, for instance “skins” that change the way it renders pages in
HTML. Site administrators download plug-ins and install them site-wide, but buggy or malicious
plug-ins can introduce further security problems. Plug-ins can violate Moin’s ACL policies.
They also can wittingly or unwittingly misrender a page, confusing users with incorrect output.

99



100

httpd

httpd

wikilaunch

wikilaunch

wiki.py

wiki.py

pmgr.py

Port 80

Flume Server

Figure 8-1: FlumeWiki application overview, showing two ofmany process pipelines. The
top request is during a session login; the bottom request is for a subsequent logged-in request.
Flume-oblivious processes are unshaded, unconfined processes are striped, and confined pro-
cesses are shaded.

A site administrator may want to install a plug-in for some parts of the site, but not all of it.
For example, the engineering company’s Moin administratormay only trust Moin’s base code
to edit and render engineering documents, but she may want toallow plug-ins to run on other
portions of the site. Currently, this policy is difficult to enforce because Python can dynamically
load plug-ins at any time; a bug in Moin could cause it to load untrusted plug-ins accidentally.

8.2 Fluming MoinMoin

Flume’s approach for enhancing Moin’s read and write protection is to factor out security code
into a small, isolated security module, and leave the rest ofMoin largely unchanged. The security
module needs to configure only a Flume DIFC policy and then runMoin according to that policy.
This division of labor substantially reduces the amount of trusted code and the potential for
security-violating bugs. In addition, the security modulecan impose end-to-end integrity by
forcing the untrusted portion to run with a non-empty integrity label, yielding guarantees of the
form: “no plug-ins touched the data on this page at any time” or “vendorv’s plug-in touched this
data but no other plug-ins did.”

8.3 FlumeWiki Overview

Figure 8-1 illustrates the four main components of the FlumeWiki system. FlumeWiki uses an
unmodified Apache Web server (httpd) for the front-end request handling.wiki.py is the bulk
of the application code, consisting of mostly unmodified MoinMoin code. pmgr.py is a small
trusted program that manages usernames and passwords; it runs as a setlabel program so that it
may compare submitted passwords against read-protected hashes on the server.wikilaunch is
the small trusted security module; it is responsible for interpreting the Web request, launching
wiki.py with the correct DIFC policy and proxyingwikilaunch’s response back to Apache. Be-
cause it communicates with resources outside of Flume (i.e., httpd), it is unconfined and has an
e⊥ endpoint.

When a typical HTTP request enters the system it contains theclient’s usernameu and an



101

login token.httpd receives the request and launcheswikilaunch as a CGI process.wikilaunch
requestsu’s capabilities from the RM using the authentication token.It then sets up a DIFC
policy by spawning wiki.py with appropriateS, I andO. wiki.py renders the page’s HTML,
sends it towikilaunch over a pipe and exits.wikilaunch forwards the HTML back tohttpd
which finally sends it back tou’s browser. wiki.py’s S label prevents it from exporting data
without the help ofwikilaunch.

8.4 Principals, Tags and Capabilities

FlumeWiki enforces security at the level of principals, which may be users or ACL-groups
(which are groups of users). Each principalx has an export-protect tagex and a write-protect
tagwx. Principalx also has a capability groupGx = {ex

−, wx
+}.

If user u is a member of ACL-groupg with read-write privileges, her capability groupGu

also containsGg which allows her to read and modifyg’s private and write-protected data. If
useru is a member ofg with read-only privileges, her capability groupGu instead contains
Gro

g = {eg
−} which provides enough capabilities to read and exportg’s private data but not

modify it.
Each Web page on a FlumeWiki site may be export-protected and/or write-protected. Export-

protected pages have the secrecy labelS = ex wherex is the principal allowed to read and export
it. x’s write-protected pages have the write-protect capability setW = {wx

+}.

8.5 Acquiring and Granting Capabilities

When a useru logs into FlumeWiki at the beginning of a session, she provides her username and
password.wikilaunch the contacts the principal manager (pmgr.py) which verifiesu’s password
and creates a temporary session token (as described in Section 7.4.3) foru’s capability group
Gu. wikilaunch saves this session token as a cookie onu’s Web browser and on subsequent
requests,wikilaunch uses the cookie to claimGu from the RM. It then determines what pageu
is requesting and whatS andI labels to use when spawningwiki.py. Note thatwikilaunch only
receives capabilities thatu is supposed to have; it cannot accidentally grantwiki.py anything
outside ofGu. Internally, the principal manager stores a hash of each user u’s password, read-
protected byru. pmgr.py runs as a setlabel program with a capability group containing every
users’ru tag.

8.6 Export- and Write-Protection Policies

wikilaunch handles requests that read pages differently from those that write. If u’s request
is for a read, andu has at least read access for groupsg1, . . . , gn, then wikilaunch spawns
a newwiki.py processq with Sq = {eu, eg1

, . . . , egn} and Oq = Ô, allowing the standard
MoinMoin code in FlumeWiki transparent read access to files the user is allowed to read (see
Figure 8-2). For a request that involves creating or modifying a page,wikilaunch looks at the



102

httpd wikilaunch (p) wiki.py (q)
u’s

browser
Sp = {eu}

Op = Ô∪ {eu
−}

Sq = {eu}

Oq = Ô [∪{wu
+}]

Figure 8-2: Label setup for aread or write request in FlumeWiki.wiki.py only gets capability
wu

+ if writing. The target page is export- and write-protected by useru.

directoryd in which the page resides. Ifd is protected by an export-protect tagex, wikilaunch
setswiki.py’s S = {ex}. If d is also protected by a write-protect tagwx, wikilaunch sets
wiki.py’s W = {wx

+} (also shown in Figure 8-2). If the useru is not authorized to perform the
requested action,wikilaunch will fail when trying to spawnwiki.py and notify the user of their
transgression. Finally,wikilaunch sets its secrecy label equal to that ofwiki.py so that they may
share bi-directional pipe communication.

This DIFC policy provides three security properties. First, wikilaunch’s S label ensures that
only data the logged-in user is allowed to see can flow fromwiki.py to the browser. Second, any
other form of output produced bywiki.py (for example a file) will also have a label containingeu

or someeg so that other users’wikilaunch or wiki.py processes cannot reveal that output (since
they lackeu

− or eg
−). Third, it provides discretionary write control: only processes that own

wx
+ can overwritex’s files.

8.7 End-to-End Integrity

In addition to read and write protection policies, FlumeWiki can optionally use Flume’s in-
tegrity mechanisms to guard against accidental execution of untrusted dynamically-linked li-
braries or Python libraries like Moin plug-ins. The code that a Python program will execute is
difficult to predict and thus difficult to inspect statically, since it depends on settings such as
LD LIBRARY PATH, Python’s class search path, and other run-time decisions.

FlumeWiki enforces an integrity constraint on the code thatproduced each page and then
makes that integrity value visible to users. By default, only code in the base FlumeWiki distri-
bution is allowed to be involved in displaying a page. However, if a page has a name likev.f ,
wherev is the name of a third party vendor, then FlumeWiki also allows vendorv’s software to
participate in generating the page.

The default integrity policy operates as follows. During installation, all files in the distribu-
tion getI = {iw}, whereiw represents the integrity of the base distribution.wikilaunch starts
wiki.py with I = {iw}, which guarantees that the program will never read any file (including
dynamically-loaded program text) with an integrity label that doesn’t containiw. wikilaunch
sets its own label toI = {iw}. Then, ifwiki.py drops its integrity toI = {}, wikilaunch will
be unable to receive its responses. This arrangement means that all properly created wiki doc-
uments haveI = {iw}, which indicates that they were created with the base distribution alone.
In this manner, a useru gets an end-to-end integrity guarantee: all code involved with collecting



103

u’s input, writing u’s data to disk, retrieving the data, formatting the data, and outputting the
data hadiw in its label and therefore involved only the base FlumeWiki software.

For pages that allow the use of plug-in code,wikilaunch launcheswiki.py with I = {iv}
to allow v’s plug-in code to participate in the page’s rendering. However, the plug-in relies on
FlumeWiki code during processing, which it cannot read off the disk: FlumeWiki’s code does
not haveiv in its integrity label. Forwiki.py to read FlumeWiki’s code, it would need to reduce
its integrity label toI = {}, ruling out all future hopes of regaining non-empty integrity and
outputting towikilaunch. Filters (see Section 7.4.6) provide the solution.

The site administrator who installsv’s plug-in owns the capabilityiv+, and thus can create
an integrity filter that replaces labels of the formI = {iw} with {iw, iv}. This filter implements
the idea that vendorv’s code trusts FlumeWiki code. With this filter in place,wikilaunch can set
wiki.py’s and its own integrity labels toI = {iv}, thus gaining assurance that any data returned
was only touched by vendorv’s and FlumeWiki’s code.

8.8 Principal Management

FlumeWiki storesu’s private data including her email address and site preferences in the/ihome/
file system with the labels:S = {ru} and write-protectionW = {wu

+} which read and
write protects it from other users. The principal management mechanisms are not specific to
FlumeWiki and could be used in other similar systems.

A FlumeWiki installation has a special administrator account (A) whoseGA contains a capa-
bility for each principal’sr′p. The administrator’s powers are exercised by a “principal manager,”
a setlabel executable calledpmgr.py, that runs withI = {iA} and withO = GA. The integrity
restriction preventspmgr.py from accidentally referencing low-integrity shared libraries or
Python libraries. The FlumeWiki user interface runspmgr.py to perform tasks that require ad-
ministrator privileges, which includeCreateUser, LoginUser, CreateUserGroup and
InviteUserToGroup.

CreateUser creates the tags mentioned in Section 8.4 and puts them in a newly created
Gu. It adds the new user’sr′u to GA so that the administrator will be able to read the user’s
passwd.rp but not the user’s documents. Finally the principal managercreates the new user’s
home directory andpasswd.rp.

When creating a new groupg, the principal manager creates the standard set of tags and
capabilities, and then grants access toGg (the capability group containing all ofg’s capabilities)
to whomever the group administrator is. The principal manager also creates another capability
groupG′

g = {eu
−, ru

−, ru
+} for read only accessto g’s data. Through the principal manager,

g’s administrator can extend invitations to other principals on the system to join groupg. If g’s
administrator wishes to grantu read access tog, then the principal manager on his behalf creates
a new login token forG′

g and writes it to a read-protected file inu’s home directory. Whenu
logs in next, he can accept read-only membership intog by addingG′

g to his capability group
Gu. The same process is followed for read/write access, using the capability groupGg instead
of G′

g. Note that since capabilities are transferable, any memberof g with read access tog can
grant this capability to other users on the system (and similarly for read/write access).



104

LoginUser is the implementation of the steps described in Section 8.5.

8.9 Discussion

Adapting Moin to Flume required roughly 1,000 lines of new C++ code forwikilaunch, and
modifications to about 1,000 out of Moin’s 91,000 lines of Python. We did not modify or even
recompile Apache or the Python interpreter, even though Python is spawned by Flume. The
changes to Moin were in its login procedure, access control lists, and file handling, which we
modified to observe and manipulate DIFC controls (like process labels and endpoint labels).
Most of these changes are not user-visible. Though wrapper programs likewikilaunch could be
expressed in other DIFC systems like Asbestos or HiStar, theintegration within Moin would be
difficult without an application-level API like the one presented here.

An advantage of the DIFC approach is that we did not need to understand all of Moin’s code.
Becausewiki.py always runs within Flume’s confines, we need only understandwikilaunch to
grasp FlumeWiki’s security policy.wikilaunch is small, and auditing it gave us confidence in
the overall security of FlumeWiki, despite any bugs that mayexist in the original Moin code or
that we may have introduced while adapting the code.

Time did not permit the adaptation of all MoinMoin’s features, such as internationalization,
indexing, and hit counters. To Flume, these features attempt to leak data through shared files,
so they fail with Flume permission errors. FlumeWiki could reenable them with specialized
declassifiers.



Chapter 9

Evaluation

In evaluating Flume and FlumeWiki we consider whether they improve system security, how
much of a performance penalty they impose and whether Flume’s scaling mechanisms are effec-
tive.

For security, we find that Flume prevents ACL vulnerabilities and even helps discover new
vulnerabilities. For performance, we find that Flume adds from 35–286µs of overhead to in-
terposed system calls, which is significant. However, at thesystem level, the throughput and
latency of FlumeWiki is within 45% and 35% of the unmodified MoinMoin wiki, respectively,
and Flume’s clustering ability enables FlumeWiki to scale beyond a single machine as Web
applications commonly do.

9.1 Security

The most important evaluation criterion for Flume is whether it improves the security of existing
systems. Of the five recent ACL bypass vulnerabilities [73, 71], three are present in the Moin-
Moin version (1.5.6) we forked to create FlumeWiki. One of these vulnerabilities is in a feature
disabled in FlumeWiki. The other two were discovered in codeFlumeWiki indeed inherits from
Moin. We verified that FlumeWiki still “implements” Moin’s original buggy behavior and that
the Flume security architecture prevents these bugs from revealing private data.

To make FlumeWiki function in the first place, we had to identify and solve a previously
undocumented vulnerability in Moin. The original Moin leaks data through its global names-
pace. For instance, a user Bob can prove that the secret documentReasonsToFireBobexists
by trying and failing to create the document himself. By contrast, Flume’s IFC rules forced
FlumeWiki to be built in a way that doesn’t leak information through its namespace.

9.2 Interposition Overhead

To evaluate the performance overhead when Flume interposeson system calls, we measured the
system call latencies shown in Figure 9-1. In all of these experiments, the server running Linux

105



106

Operation Linux Flume diff. mult.
mkdir 86.0 371.1 285.2 4.3
rmdir 13.8 106.8 93.0 7.7
open
— create 12.5 200.2 187.7 16.0
— exists 3.2 110.3 107.1 34.5
— exists, inlined 3.3 41.0 37.7 12.5
— does not exist 4.3 101.4 97.1 23.6
— does not exist, inlined 4.2 39.8 35.6 9.5
stat 2.8 98.1 95.3 34.5
— inlined 2.8 38.7 35.9 13.7
close 0.6 0.9 0.2 1.3
unlink 15.4 110.0 94.6 7.2
symlink 9.5 106.8 97.3 11.2
readlink 2.7 90.2 87.5 33.0
create tag 22.6
change label 55.0
flumenull 20.1
IPC round trip latency 4.1 33.8 29.8 8.2
IPC bandwidth 2945 937 2008 3.1

Figure 9-1: System call and IPC microbenchmarks, and Flume overhead as a multiplier. Laten-
cies are inµs and bandwidth is in MB/sec. System calls were repeated 10,000 times, IPC round
trips were repeated one million times, and IPC bandwidth wasmeasured over a 20GB transfer;
these results are averages.

version 2.6.17 with and without Flume is a dual CPU, dual-core 2.3GHz Xeon 5140 with 4GB of
memory. The Web server is Apache 1.3.34 running MoinMoin andFlumeWiki as frozen Python
CGI programs. The Web load generator is a 3GHz Xeon with 2GB ofmemory running FreeBSD
5.4.

For most system calls, Flume adds 35–286µs per system call which results in latency over-
head of a factor of 4–35. The Flume overhead includes additional IPC, RPC marshalling, ad-
ditional system calls for extended attributes and extra computation for security checks. The
additional cost of IPC and RPC marshalling is shown by theflumenull latency, which re-
ports the latency for a no-op RPC call into the reference monitor (RM). Most Flume system calls
consist of two RPCs, one from the client application into thereference monitor and one from
the reference monitor to a file server, so the RPC overhead accounts for approximately 40µs of
Flume’s additional latency. As an optimization on public file systems, the RM handlesopen
andstat calls inline rather than querying a file server and thus avoids a second RPC. Calls like
create tag andchange label also use a single RPC into the RM andclose for files
does not contact the RM at all. For non-public file systems,open on a non-existent file requires
the RM to walk down the file system to determine what error message to return to the client, so
this operation is particularly expensive. This check is faster in a public file system (where all
files are readable to everyone), because the RM need not walk the parent directories.

Flume also adds overhead to IPC communication because it proxies IPC between processes.



107

The base case in our measurements is an IPC round trip:p writes toq, q reads,q writes top, and
thenp reads. This exchange amounts to four system calls in total onstandard Linux. The RM’s
proxying of IPC adds eight system calls to this exchange: four calls toselect, tworeads and
two writes. Thus, an IPC round trip takes 12 system calls on Flume, incurring the three-fold
performance penalty for additional system calls seen in IPCbandwidth. As withflumenull
computation and context switching in Flume add additional latency overhead, summing to the
eight-fold latency degradation seen in Figure 9-1.

9.3 Flume Overhead

To evaluate the system level performance overhead of Flume,we compare the throughput and
latency of pages served by an unmodified MoinMoin wiki and by FlumeWiki.

In the read experiments, a load generator randomly requestspages from a pool of 200 wiki
pages; the pages are approximately 9 KB each. In the write experiments, each write request
contains a 40 byte modification to one of the pages for which the server responds with an 9 KB
page. In all experiments, the request is from a wiki user, whois logged in using an HTTP
cookie. For the latency results, we report the latency with asingle concurrent client. For the
throughput results, we adjusted the number of concurrent clients to maximize throughput. Figure
9-2 summarizes the results.

FlumeWiki is 43% slower than MoinMoin in read throughput, 34% slower in write through-
put and it adds a latency overhead of roughly 40ms. For both systems, the bottleneck is the
CPU. MoinMoin spends most of its time interpreting Python and FlumeWiki has the additional
system-call and IPC overhead of Flume.

Most of FlumeWiki’s additional cost comes from calls toopen andstat when Python is
opening modules. For each page read request, the RM serves 753 system calls including 487
opens and 186stats. Of the calls toopen, 18 are for existing non-public files, 73 are for
existing public files, 16 are for non-existent non-public files and 380 are for non-existent public
files. Of thestats, 156 are for public files and 30 are for non-public files. These calls sum to
28ms of overhead per request, which accounts for much of the 39ms difference in read latency.
FlumeWiki also incurs an extrafork andexec to spawnwiki.py as well as extra system calls
on each request to setup labels, pipes and filters.

The numbers reported in Figure 9-2 reflectfrozenPython packages, both in the case of
FlumeWiki and MoinMoin. Frozen Python packages store many Python packages in one file,
and in the case of FlumeWiki reduce the combined number ofopen andstat calls from more
1900 to fewer than 700. Frozen packages especially benefit FlumeWiki’s performance, since its
system call overhead is higher than standard Moin’s.

9.4 Cluster Performance

Despite Flume’s slowdown, FlumeWiki may be fast enough already for many small wiki ap-
plications. The Flume implementation could be optimized further, but Flume’s support for a



108

Throughput (req/sec) Latency (ms/req)
MoinMoin FlumeWiki MoinMoin FlumeWiki

Read 33.2 18.8 117 156
Write 16.9 11.1 237 278

Figure 9-2: Latency and throughput for FlumeWiki and unmodified MoinMoin averaged over
10,000 requests.

centralized tag registry and FS file sharing supports another strategy for improving performance,
namely clustering. We tested scalability on a “virtual” cluster, running the FlumeWiki read
throughput experiment on the same server hardware, but witha varying number of single CPU
virtual machines on top of a single Linux-based virtual machine monitor. Each virtual machine
is limited to a single hardware CPU, and within each virtual machine, we ran Flume on a guest
Linux OS.

In this experiment, FlumeWiki stores shared data includingpages and user profiles in an NFS
file system and all other data is duplicated on each VM’s private disk. The NFS file system and
the tag registry are both served by the host machine. With a single VM (i.e., a 1-node cluster),
throughput was 4.3 requests per second. Throughput scales linearly to an aggregate of 15.5 re-
quests per second in the case of four VMs (i.e., a 4-node cluster), which is the maximum number
of CPUs on our available hardware. This cluster configuration achieves lower throughput than
the single-machine configuration (18.8 req/sec) because ofVM and NFS overhead.

9.5 Discussion

Although FlumeWiki’s cluster performance may already be suitable for some services, one di-
rection for future performance improvements is to modify FlumeWiki to run as a FastCGI service
which amortizes a CGI process’s startup cost over multiple requests. Benchmarks posted on the
MoinMoin site [99] show a tenfold performance improvement when running MoinMoin as a
FastCGI application [26] rather than a standalone CGI (as inour benchmarks) and FlumeWiki
could benefit from a similar architecture. One approach is toemulate Asbestos’s event processes:
keep one Python instance running for each(S, I,O) combination of labels currently active, and
route requests to instances based on labels. Similarly, folding wikilaunch into the web server
would avoid afork andexec per incoming request.



Chapter 10

Discussion, Future Work and
Conclusions

The thesis has made the case—via Flume—that DIFC’s advantages can be brought to bear on
standard operating systems and applications. Using Flume aprogrammer can provide strong
security for Unix applications, even if parts of the application contain bugs that are exploitable
on a non-DIFC system. In this final chapter, we examine the Flume approach, asking questions
such as: Is it really secure? Is it general? Is its complexitynecessary? Is it solving a problem
that actually matters? Reflecting upon general experience with Flume, and contrasting with
experience on the Asbestos project (of which I am a proud member), we speculate on research
directions for the future.

10.1 Programmability

MAC systems have a reputation for being difficult to program.A typical sticking point islabel
creep: all security labels monotonically increase, until no process on the system can perform
a useful task [89]. The newer wave of statically-checked systems with decentralized informa-
tion flow control (e.g., Jif) solve some of these problems butintroduce new ones: they require
security type annotations on variables and methods, and therefore increase the amount of think-
ing and typing that programmers must do; moreover, they demand many programs and libraries
be deeply modified [44]. Asbestos and HiStar also eliminate label creep with decentralization
of privilege, and without type-annotation overhead. But both require the system developers to
maintain a new software stack (especially in Asbestos) and application programmers to learn a
new programming model.

Does Flume improve programmability? Like Jif, Asbestos andHiStar, Flume offers decen-
tralization of privilege, to combat label creep. But relative to those systems, Flume has better
support for legacy software, legacy platforms, and tools that programmers typically use. In this
sense, using a Flume-enabled machine is less of a “research-prototype” experience, and simi-
lar to using the underlying operating system (i.e., Linux):unconfined processes like standard

109



110

1 import flume.flumos as flmos
2 import flume

4 t = flmos.create tag (flume.TAG OPT DEFAULT ADD, "Alice")
5 flmos.change label (flume.LABEL O, flmos.Label ())
6 f = open ("/tmp/alice.dat", "w")
7 flmos.change label (flume.LABEL S, flmos.Label ([t]) )

Figure 10-1: An example of Python code that fails under Flume, due to violation of endpoint
label safety.

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "python2.5/site-packages/flume/flmos.py", line 960, in set label

raise err ("set label failed")
File "python2.5/site-packages/flume/flmos.py", line 38, in raise err

raise flume.PermissionError, s
flume.PermissionError: "set label failed; check add sub all failure;

could not subtract all of [0x53e5f900ec160c9] with an ownership
label of []

Check endpoint label (S) failed for EP ’/tmp/alice.dat [rw]’:
don’t have all capabilities for difference label
[0x53e5f900ec160c9] where this EP label is []
and the process’s label is [0x53e5f900ec160c9]

In set process label(label type t = LABEL_S;, [0x53e5f900ec160c9])"

Figure 10-2: The error message that the code in Figure 10-1 produces.

daemons start up as normal; patches, upgrades, shells, X-windows, and even proprietary binary
software work as before.

Of course the real question is: what is the programmer experience when developing, testing,
debugging, and running confined code, or unconfined code thatcalls upon the Flume API. A
programmability improvement relative to a system like Asbestos are the details conveyed in er-
ror messages resulting from system call failures. Many important Asbestos system calls (those
derived fromsys send) cannot report errors at all for fear of information leaks. Label changes
silently fail, as do message sends to other processes, etc. Flume cannot solve all of these prob-
lems, but in an important set of cases, it can.

Consider the actual Python program shown in Figure 10-1. Here, the program creates a new
export-protection tagt in line 4, discards the capabilityt− in line 5, opens a writable file (whose
labels default toS = I = {}) in line 6, then attempts to raise its process label toS = {t} in
line 7. The label change in line 7 fails, because the writable, immutable endpoint on the file
opened in line 6 has labelS = {}, which is no longer safe. Flume can give a detailed error
message at the site of the failed system call, as shown in Figure 10-2. The error explains the
exact label, capability and endpoint configuration that caused the failure. The data conveyed



111

here is rich enough for a good programmer to get a sense of whatthe bug is. For those of lesser
abilities, this messages will admittedly be vexing (and difficult to Google). The same error crops
up in other cases, such as processes failing to change labelsif the change would cut off IPC or
signal retrieval. With endpoints, the report of the bug happens as close to the bug as possible.
This experience contrasts markedly with application development on Asbestos, in which many
errors were unreported and only manifested themselves muchlater in the program.

Another improvement in Flume (and HiStar) over Asbestos is flow-controlled IPC, as in stan-
dard Unix pipes and socketpairs. In Asbestos, communication between processes happens via
unreliable messages.p sends toq without knowing how fast to send, or whetherq received the
message, much like in UDP. Future Asbestos development plans call for reliable communication
in a user-level library (like a TCP over UDP implementation), but such a facility did not exist
when we were building Asbestos applications. In Flume, the assumption is that bidirectional
flow-controlled communication is norm, and for this reason,endpoints allow two processes with
different labels and sufficient privileges to act as if theirlabels are equal. Relative to our de-
velopment experience with unreliable communication in Asbestos, our experience with reliable
communication in Flume is extremely positive. Occasions for reliable communication abound
in the MoinMoin Wiki example: between the the Web server and the launcher, the launcher and
the application, and application and the file system, the launcher and the user manager, etc. To
establish the same communications with unreliable messages would be tedious and error-prone.
Though Flume processes with uneven labels can communicate unreliably, we have never found
a need for this feature.

Flume has room for improvement. For instance, it ought to implement better tracking of open
files, so that a process can close a final reference to a file and drop the corresponding endpoint.
Certain certain programming tasks under Flume have proven difficult, such as implementing Web
services with theflume fork rather than thespawn primitive (c.f., Sections 7.2.1 and 7.2.2).
Many bugs surrounded the closing and reopening all file descriptors (including standard er-
ror!) on either side of the call to Linux’sfork. These implementation challenges prevented
the measurement offlume fork for this thesis, but preliminary results shows that performance
improvements relative tospawn are substantial (on the order of 10x).

Debugging in general remains rudimentary. Most debugging now happens via print state-
ment sent to standard error. Sometimes bugs require relaxation of information flow control
rules, so that confined processes can still output error messages to the administrator (us), again
via standard error. In the future, these debugging statements should flow through dedicated de-
bugging devices, one per(S, I)-label combination. The problem becomes more complicated in
the scenarios described below in Section 10.5, in which developers should not have access to
debugging output, since their code is running over data thatthey are not authorized to see.

10.2 Security Compartment Granularity

A primary difference between language-level DIFC (e.g., Jif) and OS-level DIFC (e.g., Flume)
is the size of security compartments. In the former, they canbe as small as a bit; in the latter,
they can be no smaller than a thread (in HiStar) or process (inFlume). The MoinMoin applica-



112

tion, and for that matter most CGI and FastCGI-based applications, can work with process-level
label granularity. But some modern applications demand finer granularity, like Web application
servers (e.g., JBoss [82]) and relational databases (e.g.,PostgreSQL [76]). Such applications
can find convenient expression in Jif, but on Flume would either need privilege for many tags,
or operate at a very high (and therefore useless) secrecy level.

Perhaps a good general solution is a hybrid approach. Consider, for example, an implemen-
tation of FlumeWiki with a database backend. The database can be written with Jif, meaning
information flow rules control movement of labeled data inside the process’s address space, with
declassification and endorsement occurring at a few isolated, privileged functions. From Flume’s
perspective, the database runs as a highly privileged component, with access totu− for all u. But
the administrator relies on Jif’s guarantees to reassure herself that the database uses those privi-
leges responsibly. If the declassifiers and Jif’s implementation are correct, she is not vulnerable
to bugs in the large remainder of the database code. The rest of the system—wikilaunch and
wiki.py—operate as previously described, with one label per address space.

10.3 Maintenance and Internals

We built Flume with an eye toward ease of future maintenance,keeping most code in application
space. Some important maintenance tasks remain. The most onerous in our experience is up-
dating Flume’s patch to the Linux kernel (c.f., Section 7.2.1), since even minor kernel revisions
can break the patch. Flume also demands a patch ofglibc andld.so, but this software has
stayed much more stable over our two years maintaining Flume.

Some internal aspects of Flume’s implementation proved trickier than we would have liked,
such as ofwait andexit. The state machine for this aspect of Unix is complex to beginwith,
but message delivery constraints induced by DIFC add further complexity. For instance, a parent
p at secrecySp = {} gets an exit signal from a childc at Sc = {t} not whenc actually exits,
but rather whenc changes its label. Many similar corner cases complicate theimplementation
and internal garbage collection of per-process resources.Also, in retrospect, factoring the Flume
file servers into independent processes added extra implementation, debugging and performance
overhead. Though it feels like the correct design decision in terms of privilege separation [91],
future revisions of Flume’s might fold these operations directly into the reference monitor.

10.4 Threat Model

A big question to consider when evaluating Flume or systems like it, is what is thethreat model:
who is attacking the system, how do they attack it, and what are their goals? The easiest threat to
protect against are those introduced by well-intentioned but careless programmers, like the ACL-
bypass vulnerabilities we noted in MoinMoin Wiki. Programmer bugs become more virulent
when they allow arbitrary code execution (like a buffer overrun in C, a call tosystem with
unescaped data in Perl, or a SQL injection attack); an adversary who exploits such a bug can
control the Web server and the data it has access to. Even moredifficult to defend against is an



113

adversary who isinvited to run his code on the server or with access to sensitive site data (as
in Facebook’s application platform). In general, if a system intends to defend against a more
severe attack, it must make a greater upheaval to longstanding operating system or programming
techniques. We examine some of these trade-offs in the context of Flume and other ideas for
Web security.

10.4.1 Programmer Bugs That Do Not Allow Arbitrary Code Execution

To protect only against bugs like the ACL-bypass vulnerabilities in MoinMoin, a system simpler
than Flume might suffice. To secure MoinMoin, one can imaginebuilding Flume’s file I/O
checks into a Python library. Whenever MoinMoin writes a fileto disk, the library updates an
application-level label on the file. Whenever MoinMoin reads a file from disk, the library reads
in the label, and updates the label on the process. When MoinMoin outputs to the network, it
tells thewikilaunch process what it thinks its label is, andwikilaunch applies the same sort of
policies as in FlumeWiki. A more powerful technique is to build similar behavior into run-time
interpreter. For instance, Perl introduced ataint facility years ago, which categorizes data into
one of two integrity categories, and updates integrity labels as data flows through the run-time
interpreter [8]. An expansion of this technique to cover generalized labels, file I/O and IPC might
be useful in securing Perl-specific Web applications.

Relative to Flume, the library and interpreter techniques have several practical advantages.
First, they are likely easier to implement; second, they arelikely easier to program with; third
they are more portable; and fourth they are likely incur a negligible performance penalty. These
techniques would protect programmers against their own bugs, so long as those bugs do not
allow arbitrary code to execute and disable the application’s self-checking mechanism. Such an
assumption would not hold for a language like C (prone to buffer overruns) or if the attacker
could fork a new process that reads data files directly off thefile system (and not through the
tracking library).

These techniques also do not apply to systems composed of many different language tech-
nologies stitched together. For instance, large Web sites often consist of many components, built
by many engineers with differing tastes, and therefore in multiple languages. Sometimes these
sites require compiled C code when performance matters; other times, scripting languages suf-
fice for rapid prototyping; and system administrators mightprefer shell-scripting and pipelines
while accessing sensitive site data. These circumstances require security controls at the common
interface, which on many Unix systems is the system-call interface.

10.4.2 Virulent Programmer Bugs

Security becomes more complicated if programmers wish to protect themselves against more
virulent bugs that allow arbitrary code execution, or if they wish to build a system out of multiple
languages. Defense in this context leads to a system like Flume, that enforces security controls
at the system-call level. This approach has several important advantages; security controls (1)
cannot be disabled by a compromised application; (2) are available to all programs regardless of
language; (3) can cover IPC and file I/O in all cases.



114

Covert channelsemerge as a key complication in this threat model. A covert channel is
means of inter-process communication not explicitly modeled (and therefore, not controlled).
However, to exploit such a channel, an attacker must controlat least two code paths on the
system: one to encode and send the information and another todecode and receive it. Typically
such communication is difficult or impossible without general control of one or more server
processes (such as the attack in Section 3.4). Thus, covert channels are assumed not possible in
Section 10.4.1 but become possible in the presence of more virulent programmer bugs.

A covert channel on Flume, for instance, isp monopolizing CPU (or sitting idle) whileq
queries the CPU load (perhaps by measuring latency between its instructions).p can encode a
“1” as CPU monopolization and a “0” as quiescence. Of course, Flume does not capture the
notion of CPU scarcity, or that the CPU is shared among all processes. Therefore it neither
models this channel nor provably prevents it. In general, whenever two processesp andq share a
physical resource, they can communicate in this manner. Resources include: cache lines on the
CPU, memory, memory bus bandwidth, hard disk space, hard disk arms, network bandwidth, etc.
Flume does not protect against these covert channels, nor doother DIFC kernels like Asbestos
and HiStar (though HiStar solves some resource-exhaustionchannels).

The key issue to consider about covert channels is how fast they leak information, and how
observable those leaks are. One can imagine that on a Flume machine with only two active pro-
cesses (p andq), p can encode many bits as disk or cache access patterns, and have q reliably
observe them. However, machines in Web-based clusters are typically busy, with many active
processes vying for control of the machine’s resources. In such an environment, the covert chan-
nel betweenp andq becomes much noisier, and therefore, the rate of information transmission
between them must drop. Without having any real experience with covert channels on real sys-
tem, we conjecture that long-running covert channel attacks (due to noisy and slow channels) are
likely to be noticed by site administrators in well-managedserver environment. However, more
experiments on real systems, under real workloads are needed to quantify these threats.

A final point about covert channels is that they are more complicated and far less convenient
than theovertchannels typically used to leak data from Web systems. In this sense, even a system
like Flume that is susceptible to covert channels offers a substantial security improvement over
the status quo.

10.4.3 Invited Malicious Code

The most difficult attack to defend against is the malware attack, in which the administrator
actively invites malicious code onto the server and allows it to compute over sensitive data.
Here, the adversary can run many processes, and pound on covert channels without raising an
eyebrow. As discussed below, we believe that a Flume system susceptible to these attacks (and
others) is still more secure than the Facebook-like architectures in use today.



115

10.5 Generality and Future Directions

MoinMoin Wiki is a compelling target application for Flume due to its generality. Wikis support
file creation, link creation among files, namespace management, access control right manage-
ment, version control, indexing, etc. In other words, wikiscan be thought of as general file-
systems with user-friendly interfaces, building blocks for many features available on the Web
today. In this sense, thewikilaunch application might be more general than just MoinMoin Wiki
application, and apply to other applications (like Photo-sharing, blogs or social-networking) with
small modifications. The hope, eventually, is for an administrator to run a suite of interesting
Web applications using only onewikilaunch declassifier, keeping his TCB fixed while expand-
ing to new features.

One perspective on Web platforms like Facebook and OpenSocial is that they are general-
izations of wikis. Like a wiki, Facebook allows users to upload files, images, movies and docu-
ments; it allows groups of users to contribute to the same document, say by all adding captions
to the same picture; it also features access control policies, more powerful than MoinMoin’s in
some cases (such as “friend-of-a-friend” permissions). Ata conceptual level, third-party Face-
book applications are reminiscent of third-party MoinMoinplug-ins. In both cases, the plug-in
code has access to the important underlying data; there are differences, though, such as where
does the code actually run (on the same server as the main application or on a third-party server),
who can add new modules, who can use new modules, etc.

One idea for reinventing extensible Web platforms, which wecall “W5,” is to implement
them as generalized wikis: to allow contributors to upload both content and code [59]. W5’s
design follows from our current implementation of FlumeWiki. The wikilaunch script remains
the important declassifier, but the wiki software (wiki.py) itself is replaced by arbitrary uploaded
code. Even if uploaded code is malicious, it is still subjectto DIFC rules. Therefore, users
of the W5 system can experiment with new uploaded applications without fear of losing their
data. Similar policies pertain to integrity protection: only high-integrity application code can
overwrite high-integrity data stored on the W5 server. Reputation of code authors or editorial
oversight can establish which pieces of the system get a high-integrity certification.

W5 presents challenges that Flume does not yet meet. As mentioned previously, some covert
channels unclosed in Flume can allow information leaks. W5 must prevent against resource-
exhaustion: attacks by malicious code meant to prevent goodcode from doing useful work.
Web sites more general than MoinMoin might require a database backend that stores data in
individually labeled rows. Several of these problems have related solutions in the literature:
Google’s App Engine [39], Amazon Web Services [1], and various virtual machine approaches
provide means of isolation among mutually distrustful codemodules written by different authors.
The SeaView database applies traditional MAC rules [63]. And on a busy Web-server with many
applications contending for resources, covert channels based on resource exhaustion might prove
noisy and therefore slow.

W5 must also address browser-based attacks. For instance, imagine Charlie uploads a third-
party application to W5, which Alice later uses. Charlie’s application reads Alice’s secrets from
the file system, and due to the policy enforced bywikilaunch, cannot send that data back to



116

Charlie’s browser. However, Charlie’s code can send Alice’s data to Alice’s browser and then
ask Alice’s browser to send that data to Charlie’s server. For instance, it could send HTML
Alice, instructing her browser to load the imagehttp://charlie.com/s, wheres is Alice’s
secret. Charlie can then monitor the access logs oncharlie.com to recovers. Charlie can
also use JavaScript or Ajax calls to achieve the same ends. Charlie has other attack possibilities:
he can instruct Alice’s browser to post her secret data back to the W5 site, but to a public forum.
Or he can disrupt the integrity of Alice’s data, by instructing her browser to overwrite her high-
integrity server-side data.

The solution to these browser-based attacks is to consider the Web browser as part of the Web
system, and to track information flow between the server and client. That is, Alice’s browser
runs with a secrecy and integrity label, ensuring that data movement from the W5 site, to Alice’s
browser and back to the W5 site obeys all of the same DIFC rulesalready present on the server.
The Swift work achieves some of these properties, but under the assumption that the site user
(e.g., Alice) and not the programmer (e.g., Charlie) is malicious [12]. W5 needs to employ
either similar language-based approaches, or perhaps browser modifications to enable dataflow
tracking. As it does so, it might be providing general solutions for XSS and XSRF attacks.

10.6 Conclusion

When researchers laid the groundwork for computer securityin the sixties and seventies, they
experimented with several styles of access controls, such as discretionary access control lists, or
more military-style mandatory access control. As the PC rose to prominence in the eighties, it
forced users and developers down the discretionary path (when using access control at all). The
problem is that the discretionary style of access control does not work against modern threats:
the prevalence of malware and the deteriorating state of Websecurity have proven so.

With Flume, this thesis aims to show that information flow tracking can work on popular
systems, and that DIFC offers a strong solution to otherwiseintractable security problems. With
Web technologies maturing and aiming to be center stage for the next phase in computing, now
is the perfect time to set developers on the right access-control trajectory. To this end, we hope
that DIFC can transcend academic research and secure futuremainstream computing systems.



Appendix A

More on Non-Interference

A.1 Unwinding Lemma

Ryan and Schneider [88] allude to an “unwinding” result for non-interference, which states that
if a CSP processP shows a non-interference property for each of its states, then it shows the
same property over all traces [87]. Unfortunately, best efforts to recover the publication, whether
in paper or electronic form, have failed. We recreate a proofof the “easy” half of the unwinding
result here, though the proof of Flume’s non-interference does not require it.

Lemma1. If ∀a, a′ ∈ traces(S) such thata ≈L a′:

1. initials(S/a) ∩ L = initials(S/a′) ∩ L

2. refusals(S/a) ↾ L = refusals(S/a′) ↾ L

then∀b, b′ ∈ traces(S) such thatb ≈L b′: SFJS/bK ↾ L = SFJS/b′K ↾ L

In other words, if we can prove that after two equivalent traces,S still accepts and rejects the
same events, thenS exhibits non-interference.

Proof We show the equality of the two failure sets by proving each isincluded in the other.
Take an arbitraryf ∈ SFJS/bK ↾ L. The goal is to prove thatf ∈ SFJS/b′K ↾ L. Write
f = (c,X). Thus, there exists somef ′ = (c′,X ′) such thatc = c′ ↾ L, X = X ′ ∩ L and
f ′ ∈ SFJS/bK, by definition of projection over failures.

First consider the set of refused eventsX ′. Since(c′,X ′) ∈ SFJS/bK, it follows thatX ′ ∈

refusals(S/(b a c′)), and applying projections to both sides,X ′ ∩L ∈ refusals(S/(b a c′)) ↾ L,

or equivalently,X ∈ refusals(S/(b a c′)) ↾ L. By assumption,b ≈L b′. By definition ofc and
c′, we also have thatc′ ≈L c. Thus, their concatenations are also equivalent when projected over
L. That is,(b a c′) ≈L (b′ a c). Thus,X ∈ refusals(S/(b′ a c)) ↾ L, sincerefusals(S/(b′ a c))

= refusals(S/(b a c′)) by our assumption.

117



118

Next, consider the trace portion off ′, denotedc′. (c′,X ′) ∈ SFJS/bK implies thatb a c′ ∈
traces(S). Our goal is to show thatc ∈ traces(S/b′) ↾ L. Write the tracec′ in terms of a
sequence of events:

c′ = 〈e1, e2, . . . , en〉

For eachi, we have thatei ∈ initials(S/(b a 〈e1, . . . , ei−1〉)) by definition. If ei ∈ L, then it

follows thatei ∈ initials(S/(b a 〈e1, . . . , ei−1〉)) ∩ L. Using the same logic as above,b ≈L b′

implies that(b a 〈e1, . . . , ei−1〉) ≈L (b′ a 〈e1, . . . , ei−1〉), and hence:

initials(S/(b a 〈e1, . . . , ei−1〉)) ∩ L = initials(S/(b′ a 〈e1, . . . , ei−1〉)) ∩ L

by our assumption. Thus, ifei ∈ L, thenei ∈ initials(S/(b′ a 〈e1, . . . , ei−1〉)) ∩ L. Take
the maximali such thatei ∈ L, and call it i∗. By the definition of traces, it follows that:
〈e1, . . . , ei∗〉 ∈ traces(S/b′). And also, since the sequence〈e1, . . . , ei∗〉 includes all events from
c, we have that〈e1, . . . , ei∗〉 ↾ L = c, which shows thatc ∈ traces(S/b′).

Thus,f ∈ SFJS/b′K ↾ L, and consequently,SFJS/bK ↾ L ⊆ SFJS/b′K ↾ L. The other
inclusion follows by symmetry.



Bibliography

[1] Amazon. Amazon Web Services.http://aws.amazon.com.

[2] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Burnett, Timothy E.
Denehy, Thomas J. Engle, Haryadi S. Gunawi, James A. Nugent,and Florentina I.
Popovici. Transforming policies into mechanisms with infokernel. InProceedings
of19th ACM Symposium on Operating Systems Principles, pages 90–105, Bolton
Landing, Lake George, New York, October 2003.

[3] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle,Chris Wright, and Adam
Shostack. Timing the application of security patches for optimal uptime. InProceedings
of Sixteenth Systems Administrator Conference (LISA), Berkeley, CA, 2002.

[4] D. Elliott Bell and Leonard J. LaPadula. Secure computersystems: Mathematical
foundations. Technical Report Technical Report 2547, Volume I, MITRE Corparation,
Bedford, MA, March 1973.

[5] D. Elliott Bell and Leonard J. LaPadula. Secure computersystem: Unified exposition
and multics interpretation. Technical Report MTR-2997, Rev. 1, MITRE Corparation,
Bedford, MA, March 1976.

[6] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. InProceedings of the 16th Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO), pages 1–15, August 1996.

[7] K. J. Biba. Integrity considerations for secure computer systems. Technical Report
MTR-3153, Rev. 1, MITRE Corp., Bedford, MA, 1976.

[8] Gunther Birznieks. CGI/Perl Taint Mode FAQ, 1998.
http://gunther.web66.com/FAQS/taintmode.html.

[9] Micah Brodsky, Petros Efstathopoulos, Frans Kaashoek,Eddie Kohler, Maxwell Krohn,
David Mazières, Robert Morris, Steve VanDeBogart, and Alexander Yip. Toward secure
services from untrusted developers. Technical Report TR-2007-041, MIT CSAIL,
August 2007.

119



120

[10] CERT. Advisory CA-2000-02: malicious HTML tags embedded in client web requests,
2000.http://www.cert.org/advisories/CA-2000-02.html.

[11] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin
Zheng. Secure Web applications via automatic partitioning. In Proceedings of 20th ACM
Symposium on Operating Systems Principles, Stevenson, WA, October 2007.

[12] Steven Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing confidentiality and
integrity in Web applications. InProceedings of 16th USENIX Security Symposium,
Boston, MA, August 2007.

[13] Neil Chou, Robert Ledesma, Yuka Teraguchi, Dan Boneh, and John C. Mitchell.
Client-side defense against web-based identity theft. InProceedings of the 11th Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, 2004.

[14] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: Automatic detection and prevention of buffer-overflow attacks.
In Proceedings of11th USENIX Security, San Francisco, California, August 2002.

[15] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. InProceedings of 6th Symposium on Operating Systems Design and
Implementation (OSDI), December 2004.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. InProceedings of
20th ACM Symposium on Operating Systems Principles, Stevenson, WA, October 2007.

[17] Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, May 1976.

[18] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works. InProceedings
ofthe SIGCHI Conference on Human Factors in Computing Systems, pages 581–590,
2006.

[19] T. Dierks and E. Rescorla. The transport layer security(tls) protocol, version 1.1.
Technical report, Network Working Group, April 2006.

[20] Chad R. Dougherty. Vulnerability note VU #80013: Multiple DNS implementations
vulnerable to cache poisoning. Technical report, United States Computer Emergency
Readiness Team, July 2008.http://www.kb.cert.org/vuls/id/800113.

[21] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler,
Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and event
processes in the Asbestos operating system. InProceedings of 20th ACM Symposium on
Operating Systems Principles, Brighton, UK, October 2005.



121

[22] David Endler. The evolution of cross site scripting attacks. Technical report, iDEFENSE
Labs, 2002.

[23] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole.Exokernel: An operating
system architecture for application-level resource management. InProceedings of15th
ACM Symposium on Operating Systems Principles, pages 251–266, Copper Mountain
Resort, Colorado, December 1995.

[24] Facebook. Facebook developers wiki.
http://wiki.developers.facebook.com/index.php/API.

[25] Facebook.com.http://www.facebook.com.

[26] Open Market.http://www.fastcgi.com.

[27] Justin Fielding. UN website is defaced via SQL injection. Tech Republic, August 2007.
http://blogs.techrepublic.com.com/networking/?p=312.

[28] FIPS 180-1.Secure Hash Standard. U.S. Department of Commerce/N.I.S.T., National
Technical Information Service, Springfield, VA, April 1995.

[29] FIPS 180-2.Secure Hash Standard. U.S. Department of Commerce/N.I.S.T., National
Technical Information Service, Springfield, VA, August 2002.

[30] Django Software Foundation. Django.

[31] Timothy Fraser. LOMAC: Low water-mark integrity protection for COTS environments.
In Proceedings of2000 IEEE Symposium on Security and Privacy, pages 230–245,
Oakland, CA, May 2000.

[32] Timothy Fraser, Lee Badger, and Mark Feldman. Hardening COTS software with
generic software wrappers. InProceedings ofIEEE Symposium on Security and Privacy,
Oakland, CA, May 1999.

[33] Stefan Frei, Thomas Dübendorfer, Gunter Ollmann, andMartin May. Understanding the
Web browser threat: Examination of vulnerable online Web browser populations and the
”insecurity iceberg”. Technical Report 288, ETH Zurich, January 2008.

[34] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: Adelegating architecture for
secure system call interposition. InProceedings of the 11th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, 2004.

[35] Jacques Gelinas. Virtual private servers and securitycontexts, January 2003.
http://linux-vserver.org.

[36] J. A. Goguen and J. Meseguer. Security policies and security models. InIEEE
Symposium on Research in Security and Privacy, 1982.



122

[37] R. P. Goldberg. Architecture of virtual machines. InProceedings of the workshop on
virtual computer systems, pages 74–112, 1973.

[38] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions.Journal of the ACM, 33(4):210–217, 1986.

[39] Google. Google App Engine.http://code.google.com/appengine.

[40] Google.com. Opensocial.http://code.google.com/apis/opensocial/.

[41] Andy Greenberg. Google’s opensocial could invite trouble. Forbes.com, November 14
2007.http://www.forbes.com/2007/11/13/
open-social-google-tech-infrastructure-cx ag 1114open.html.

[42] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A classification of
sql-injection attacks and countermeasures. InProceedings of the IEEE International
Symposium on Secure Software Engineering, Arlington, VA, USA, March 2006.

[43] Norman Hardy. The confused deputy: (or why capabilities might have been invented).
22(4), October 1988.

[44] Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McDaniel. Understanding practical
application development in security-typed languages. InProceedings of22st Annual
Computer Security Applications Conference (ACSAC), Miami, Fl, December 2006.

[45] Boniface Hicks, Sandra Rueda, Trent Jaeger, and Patrick McDaniel. Integrating selinux
with security-typed languages. InProceedings of the 3rd SELinux Symposium, March
2007.

[46] C. A. R. Hoare.Communicating Sequential Processes. Prentice/Hall International,
Englewood Cliffs, New Jersey, 1985.

[47] A. Householder, K. Houle, and C. Dougherty. Computer attack trends challenge Internet
security.Computer, 35(4):5–7, Apr 2002.

[48] Jeremy Jacob. On the derivation of secure components. In Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, 1989.

[49] Michael B. Jones. Interposition agents: Transparently interposing user code at the
system interface. InProceedings of14th Symposium on Operating Systems Principles
(SOSP), Asheville, NC, December 1993.

[50] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing cross site request
forgery attacks. InIEEE International Conference on Security and Privacy in
Communication Networks (SecureComm), pages 1–10, September 2006.



123

[51] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the omnipotent root. In
Proceedings of 2nd International System Administration and Netwroking Conference
(SANE), Maastricht, NL, May 2000.

[52] Gregg Keizer. FAQ: The monster.com mess, August 2007.
http://www.computerworld.com/action/
article.do?command=viewArticleBasic&articleId=9032518.

[53] Key Logic. The KeyKOS/KeySAFE System Design, sec009-01 edition, March 1989.
http://www.agorics.com/Library/KeyKos/keysafe/Keysafe.html.

[54] Engin Kirda, Christopher Kruegel, Giovanni Vigna, andNenad Jovanovic. Noxes: A
client-side solution for mitigating cross site scripting attacks. InProceedings of the 21st
ACM Symposium on Applied Computing, Security Track, April 2006.

[55] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution via
program shepherding. InProceedings of 11th USENIX Security, August 2002.

[56] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler, David
Mazières, Robert Morris, Michelle Osborne, Steve VanDeBogart, and David Ziegler.
Make least privilege a right (not a privilege). InProceedings of 10th Hot Topics in
Operating Systems Symposium (HotOS-X), Santa Fe, New Mexico, June 2005.

[57] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Events can make sense. In
Proceedings of 2007 USENIX Annual Technical Conference, Santa Clara, CA, June 2007.

[58] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information flow control for standard OS abstractions.
In Proceedings of the 21st Symposium on Operating Systems Principles (SOSP),
Stevenson, WA, October 2007.

[59] Maxwell Krohn, Alexander Yip, Micah Brodsky, Robert Morris, and Michael Walfish. A
World Wide Web Without Walls. InProceedings of the 6th ACM Workshop on Hot
Topics in Networks (HotNets), Atlanta, GA, November 2007.

[60] Robert Lemos. Payroll site closes on security worries.Cnet News.com, February 2005.
http://news.com.com/2102-1029 3-5587859.html.

[61] Peng Li and Steve Zdancewic. Encoding information flow in haskell. InProceedings of
19th IEEE Computer Security Foundations Workshop (CSFW), pages 16–27, 2006.

[62] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies
into the Linux operating system. InProceedings of 2001 USENIX Annual Technical
Conference, San Diego, CA, June 2001. FREENIX track.

[63] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W.R. Shockley. The SeaView
Security Model.IEEE Transactions on Software Engineering, 16(6):593–607, 1990.



124

[64] Caroline McCarthy. Facebook dumps Secret Crush application over spyware claim.Cnet
News.com, January 7 2008.
http://news.cnet.com/8301-13577 3-9843175-36.html.

[65] Joe Mcdonald. China says web users top u.s. at 253 million. Associated ProcesS, July 25
2008.

[66] M. Douglas McIlroy and James A. Reeds. Multilevel security in the UNIX tradition.
Software—Practice and Experience, 22(8):673–694, 1992.

[67] Mark Miller and Jonathan S. Shapiro. paradigm regained: Abstraction mechanisms for
access control. 2003.

[68] The MoinMoin Wiki Engine, December 2006.
http://moinmoin.wikiwikiweb.de/.

[69] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow
control. InProceedings of16th ACM Symposium on Operating Systems Principles, pages
129–142, Saint-Malô, France, October 1997.

[70] Andrew C. Myers and Barbara Liskov. Protecting privacyusing the decentralized label
model.ACM Transactions on Computer Systems, 9(4):410–442, October 2000.

[71] National Vulnerability Database. CVE-2007-2637.
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-2637.

[72] News10. Hacker accesses thousands of personal data files at CSU Chico, March 2005.
http://www.news10.net/display story.aspx?storyid=9784.

[73] Open Source Vulnerability Database.
http://osvdb.org/searchdb.php?base=moinmoin.

[74] J. Ouaknine. A framework for model-checking timed CSP.Technical report, Oxford
University, 1999.

[75] Bryan Parno, Cynthia Kuo, , and Adrian Perrig. Phoolproof phishing prevention. In
Proceedings of the 10th International Conference on Financial Cryptography and Data
Security, Anguilla, British West Indies, February 2006.

[76] PostgreSQL.http://www.postgresql.org.

[77] Francois Pottier and Vincent Simonet. Information flowinference for ML. In
Proceedings of Symposium on Principles of Programming Languages (POPL), pages
319–330, 2002.

[78] Kevin Poulsen. Car shoppers’ credit details exposed inbulk. SecurityFocus, September
2003.http://www.securityfocus.com/news/7067.



125

[79] Kevin Poulsen. Ftc investigates petco.com security hole. SecurityFocus, December
2003.http://www.securityfocus.com/news/7581.

[80] Niels Provos. Improving host security with system callpolicies. InProceedings of 12th
USENIX Security Symposium, Washington, DC, August 2003.

[81] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, and Nagendra
Modadugu. The ghost in the browser: Analysis of Web-based malware. InProceedings
of First Workshop on Hot Topics in Understanding Botnets, Cambridge, MA, April 2007.

[82] Inc. Red Hat. JBoss enterprise middleware.http://www.jboss.org.

[83] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes.
Theoretical Computer Science, pages 249–261, 1988.

[84] Ivan Ristić. Firefox 3 improves handling of invalid SSL certificates, April 2008.
http://blog.ivanristic.com/2008/04/firefox-3-ssl-i.html.

[85] A. W. Roscoe.A Theory and Practice of Concurrency. Prentice Hall, London, UK, 1998.

[86] A.W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? InPCSFW:
Proceedings of The 12th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1999.

[87] Peter A. Ryan. A CSP formulation of non-interference and unwinding.Cipher: IEEE
Computer Society Technical Committee Newsletter on Security & Privacy, pages 19–30,
1991.

[88] Peter A. Ryan and Steve A. Schneider. Process algebra and non-interference.Journal of
Computer Security, (9):75–103, 2001.

[89] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[90] Jerome H. Saltzer. Protection and the control of information sharing in the multics
system.Communications of the ACM, 17(7), July 1974.

[91] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer
systems.Proceedings of the IEEE, 63(9):1278–1308, September 1975.

[92] Steve Schneider.Concurrent and Real-Time Systems: The CSP Approach. John Wiley &
Sons, LTD, Chichester, UK, 2000.

[93] Bruce Schneier. Two-factor authentication: too little, too late.Communications of the
ACM, 48(4):136, 2005.

[94] Mark Seaborn. Plash: tools for practical least privilege.
http://plash.beasts.org.



126

[95] J. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and M.Miller. Towards a verified,
general-purpose operating system kernel. In1st NICTA Workshop on Operating System
Verification, October 2004.

[96] Jonathan S. Shapiro, Jonathan Smith, and David J. Farber. EROS: a fast capability
system. InProceedings of17thACM Symposium on Operating Systems Principles,
Kiawah Island, SC, October 199.

[97] 37 Signals. Ruby on rails.http://www.rubyonrails.org/.

[98] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux security
module, February 2006.
http://www.nsa.gov/selinux/papers/module-abs.cfm.

[99] Nir Soffer. MoinBenchmarks.
http://moinmoin.wikiwikiweb.de/MoinBenchmarks.

[100] Chris Soghoian. Hackers target Facebook apps. March 27 2008.
http://news.cnet.com/8301-13739 3-9904331-46.html.

[101] IBM Internet Security Systems. X-forceR©2008 mid-year trend statistics. Technical
report, IBM, 2008.http://www-935.ibm.com/services/us/iss/xforce/
midyearreport.

[102] Richard Ta-Min, Lionel Litty, and David Lie. Splitting Interfaces: Making trust between
applications and operating systems configurable. InProceedings of 2006 Operating
Systems Design and Implementation (OSDI), Seattle, Washington, November 2006.

[103] Rebecca Trounson. Major breach of UCLA’s computer files. Los Angeles Times,
December 12 2006.

[104] VMware. VMware and the National Security Agency team to build advanced secure
computer systems, January 2001.
http://www.vmware.com/pdf/TechTrendNotes.pdf.

[105] Helen J. Wang, Xiaofeng Fan, Collin Jackson, and Jon Howell. Protection and
communication abstractions for Web browsers in MashupOS. In Proceedings of 20th
ACM Symposium on Operating Systems Principles, Stevenson, WA, October 2007.

[106] Robert Watson, Wayne Morrison, Chris Vance, and BrianFeldman. The TrustedBSD
MAC framework: Extensible kernel access control for FreeBSD 5.0. InProceedings of
2003 USENIX Annual Technical Conference, pages 285–296, San Antonio, TX, June
2001.

[107] Dan Wendlandt and Ethan Jackson. Perspectives : Improving ssh-style host
authentication with multi-path network probing. InProceedings of 2008 USENIX
Annual Technical Conference, Boston, MA, June 2008.



127

[108] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and performance in the
Denali isolation kernel. InProceedings of 5th Symposium on Operating Systems Design
and Implementation (OSDI), December 2002.

[109] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg
Kroah-Hartman. Linux security modules: General security support for the Linux kernel.
In Proceedings of 11th USENIX Security Symposium, San Francisco, CA, August 2002.

[110] Edward Z. Yang. HTML purifier.http://htmlpurifier.org.

[111] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox. TightLip: Keeping
applications from spilling the beans. InProceedings of 4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Cambridge, Massachusetts,
April 2007.

[112] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Secure program partitioning.ACM
Transactions on Computer Systems, 20(3):283–328, 2002.

[113] Nickolai B. Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information flow explicit in HiStar. InProceedings of 5th Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, November 2006.

[114] Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterference. In
Proceedings of 2nd International Workshop on Formal Aspects in Security and Trust
(FAST), August 2004.

[115] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static information
flow control. International Journal of Information Security, 6(2):67–84, 2007.


